Question #289650

The function f(x)= sin^2x is uniformly continuous in the interval [0,π]. True or false

1
Expert's answer
2022-01-25T14:40:02-0500

Let ϵ>0 be given, we need to show that  a δ(ϵ)>0 sin2xsin2y<ϵ wheneverxy<δ(ϵ) and x,y[0,π].Now, let ϵ>0 be given. Then, whenever xy<δ(ϵ) and x,y[0,π] we have:sin2xsin2y=(sinx+siny)(sinxsiny),difference of two squares=sinx+sinysinxsiny(sinx+siny)sinxsiny,triangle inequality=2sinxsiny,since sinx1  xR=2×2cos(x+y2)sin(xy2)=4cos(x+y2)sin(xy2)=4sin(xy2)2xy=2×δ=ϵ,if δ=ϵ2.Thus, given any ϵ>0  δ(ϵ)>0sin2xsin2y<ϵ whenever xy<δ(ϵ) and x,y[0,π],showing that f(x)=sin2x is uniformly continuous on [0,π].\displaystyle Let\ \epsilon>0\text{ be given, we need to show that }\exists\ a\ \delta(\epsilon)>0\ \ni|\sin^2x-\sin^2y|<\epsilon\ \text{whenever}\\ |x-y|<\delta(\epsilon)\ and\ x,y\in[0,\pi].\\ \text{Now, let }\epsilon>0\text{ be given. Then, whenever}\ |x-y|<\delta(\epsilon)\ and\ x,y\in[0,\pi]\ \text{we have}:\\ |\sin^2x-\sin^2y|=|(\sin x+\sin y)(\sin x-\sin y)|, \text{difference of two squares}\\ \qquad\qquad\qquad\quad=|\sin x+\sin y||\sin x-\sin y|\\ \qquad\qquad\qquad\quad\leq(|\sin x|+|\sin y|)|\sin x-\sin y|, \text{triangle inequality}\\ \qquad\qquad\qquad\quad=2|\sin x-\sin y|, \text{since }|\sin x|\leq1\ \forall \ x\in\R\\ \qquad\qquad\qquad\quad=2\times|2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})|\\ \qquad\qquad\qquad\quad=4|\cos(\frac{x+y}{2})||\sin(\frac{x-y}{2})|\\ \qquad\qquad\qquad\quad=4|\sin(\frac{x-y}{2})|\leq2|x-y|=2\times \delta=\epsilon, \text{if }\delta=\frac{\epsilon}{2}.\\ \quad\text{Thus, given any }\epsilon>0\ \exist\ \delta(\epsilon)>0\ni|\sin^2x-\sin^2y|<\epsilon\ \text{whenever}\ |x-y|<\delta(\epsilon)\ and\\\ x,y\in[0,\pi], \text{showing that }f(x)=\sin^2x \text{ is uniformly continuous on }[0, \pi].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS