Let ϵ>0 be given, we need to show that ∃ a δ(ϵ)>0 ∋∣sin2x−sin2y∣<ϵ whenever∣x−y∣<δ(ϵ) and x,y∈[0,π].Now, let ϵ>0 be given. Then, whenever ∣x−y∣<δ(ϵ) and x,y∈[0,π] we have:∣sin2x−sin2y∣=∣(sinx+siny)(sinx−siny)∣,difference of two squares=∣sinx+siny∣∣sinx−siny∣≤(∣sinx∣+∣siny∣)∣sinx−siny∣,triangle inequality=2∣sinx−siny∣,since ∣sinx∣≤1 ∀ x∈R=2×∣2cos(2x+y)sin(2x−y)∣=4∣cos(2x+y)∣∣sin(2x−y)∣=4∣sin(2x−y)∣≤2∣x−y∣=2×δ=ϵ,if δ=2ϵ.Thus, given any ϵ>0 ∃ δ(ϵ)>0∋∣sin2x−sin2y∣<ϵ whenever ∣x−y∣<δ(ϵ) and x,y∈[0,π],showing that f(x)=sin2x is uniformly continuous on [0,π].
Comments