Question #235228

 Let f:[a, b] → ℝ be a function and let c ∈ (a, b). If f is of bounded variation on [a, b],

prove that f is bounded on [a, b] and v(f,[a, b] = v(f,[a, c] + v(f,[c,d]).


1
Expert's answer
2021-09-12T17:34:42-0400

Definitions. A finite subset P={x0,x1,,xnP}[a,b]P=\{x_0, x_1, \dots,x_{n_P}\}\subset[a,b] is a partition of the segment [a,b][a,b] if and only if a=x0<x1<,xnP1<xnP=ba=x_0<x_1<\dots,x_{n_P-1}<x_{n_P}=b. The set of all partitions of the segment [a,b][a,b] is denoted by Part[a,b]Part[a,b]. If f:[a,b]Rf:[a,b]\to \mathbb{R} is a function, then the variation of f(x)f(x) on the partition P is the sum V(f;P)=i=1nPf(xi)f(xi1)V(f;P)=\sum\limits_{i=1}^{n_P}|f(x_i)-f(x_{i-1})|. A quantity Vab(f):=sup{V(f;P):PPart[a,b]}V_a^b(f):=\sup\{V(f;P): P\in Part[a,b]\} is called by the total variation of the function f(x)f(x) on the segment [a,b][a,b]. The function f(x)f(x) is a function of bounded variation on the segment [a,b][a,b], if and only if Vab(f)<+V_a^b(f)<+\infty.


Theorem 1. If f(x)f(x) is a function of bounded variation on the segment [a,b][a,b], then f(x)f(x) is bounded on [a,b][a,b].

Proof. Suppose that f(x)f(x) is unbounded on [a,b][a,b]. Then for all kNk\in\mathbb{N} there exists tk[a,b]t_k\in [a,b] such that f(tk)+|f(t_k)|\to+\infty, as k+k\to+\infty . Consider the partition Pk={a,tk,b}Part[a,b]P_k=\{a,t_k,b\}\in Part[a,b].

V(f;Pk)=f(tk)f(a)+f(tk)f(b)2f(tk)f(a)f(b)+V(f;P_k)=|f(t_k)-f(a)|+|f(t_k)-f(b)|\geq 2|f(t_k)|-|f(a)|-|f(b)|\to+\infty

Therefore, Vab(f)=sup{V(f;P):PPart[a,b]}=+V_a^b(f)=\sup\{V(f;P): P\in Part[a,b]\}=+\infty and f(x)f(x) is not a function of bounded variation on [a,b][a,b]. The received contradiction proves the theorem.


Theorem 2. If c(a,b)c\in(a,b) then Vab(f)=Vac(f)+Vcb(f)V_a^b(f)=V_a^c(f)+V_c^b(f).

Proof. Let P1={x0,x1,,xn1}Part[a,c]P_1=\{x_0, x_1, \dots,x_{n_1}\}\in Part[a,c], P2={y0,y1,,yn2}Part[c,b]P_2=\{y_0, y_1, \dots,y_{n_2}\}\in Part[c,b]. Put P=P1P2Part[a,b]P=P_1\cup P_2\in Part[a,b]. Then

V(f;P)=i=1n1f(xi)f(xi1)+j=1n2f(yj)f(yj1)=V(f;P1)+V(f;P2)V(f;P)=\sum\limits_{i=1}^{n_1}|f(x_i)-f(x_{i-1})|+\sum\limits_{j=1}^{n_2}|f(y_j)-f(y_{j-1})|=V(f;P_1)+V(f;P_2)

Hence

(*) Vab(f)=sup{V(f;P):PPart[a,b]}V_a^b(f)=\sup\{V(f;P): P\in Part[a,b]\}\geq

sup{V(f;P1)+V(f;P2)P1Part[a,c],P2Part[c,b]}=\sup\{V(f;P_1)+V(f;P_2) | P_1\in Part[a,c], P_2\in Part[c,b]\}=

=Vac(f)+Vcb(f)=V_a^c(f)+V_c^b(f)

By now, let PPart[a,b]P\in Part[a,b] be arbitrary. Put P=P{c}P'=P\cup\{c\}.

If cPc\in P, then P=PP'=P andV(f;P)=V(f;P)V(f;P')=V(f;P).

If cPc\notin P then c(xk,xk+1)c\in(x_k, x_k+1) for some kk and, hence, V(f;P)V(f;P)=f(c)f(xk)+f(xk+1)f(c)f(xk+1)f(xk)0V(f;P')-V(f;P)=|f(c)-f(x_k)|+|f(x_{k+1})-f(c)|-|f(x_{k+1})-f(x_k)|\geq 0 by the triangle inequality.

Put LP=P[a,c]Part[a,c]LP=P'\cap [a,c]\in Part[a,c], RP=P[c,b]Part[c,b]RP=P'\cap [c,b]\in Part[c,b]. Then P=LPRPP'=LP\cup RP and LPRP={c}LP\cap RP=\{c\}. For such partitions it was proved above that V(f;P)=V(f;LP)+V(f;RP)V(f; P')=V(f; LP)+V(f; RP)

Therefore

V(f;P)V(f;P)=V(f;LP)+V(f;RP)Vac(f)+Vcb(f)V(f; P)\leq V(f; P')=V(f; LP)+V(f; RP)\leq V_a^c(f)+V_c^b(f)

Taking the supremum by PP , we obtain

Vab(f)Vac(f)+Vcb(f)V_a^b(f)\leq V_a^c(f)+V_c^b(f)

Combining this with (*), we get Vab(f)=Vac(f)+Vcb(f)V_a^b(f)= V_a^c(f)+V_c^b(f).

Q.E.D.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS