Question #221516

17. Let f: I → R, where I is an open interval containing the point c, and let k ∈ R. Prove the following.

(a) f is differentiable at c with f ′(c) = k iff limh→0 [ f (c + h) – f (c)]/h = k.

*(b) If f is differentiable at c with f ′(c) = k, then limh→ 0 [ f (c + h) – f (c – h)]/2h = k.

(c) If f is differentiable at c with f ′(c) = k, then lim n →∞ n[f (c + 1/n) – f (c)] = k.

(d) Find counterexamples to show that the converses of parts (b) and (c) are not true. 


The book is Steven R. Lay, Analysis with an introduction to proof.


1
Expert's answer
2021-08-02T17:17:19-0400

Answer:-

We have given f:IR    ;f:I \rightarrow R \ \ \ \ ; I is an open interval is differentiable at c(a,b)c \in (a,b)

and f(c)=k    ;kIRf'(c)=k \ \ \ \ ;k\in IR

then f(x) can be approximated by linear function of x ,    \ \ \ \because k is a constant

\therefore f(x)=kx+d        dIRf(x)=kx +d \ \ \ \ \ \ \ \ d\in IR

Now f(c+h)=k(c+h)+d=kc+kh+df(c+h)=k(c+h)+d=kc+kh+d

f(c)=kc+df(c)=kc+d

limh0f(c+h)f(c)h\therefore lim_{h\rightarrow 0}\frac{f(c+h)-f(c)}{h}\\

=limh0kc+kh+dkcdh= lim_{h\rightarrow 0} \frac{kc+kh+d-kc-d}{h}

=limh0khh=k=lim_{h\rightarrow 0}\frac{kh}{h}\\ =\boxed{k}

conversely

limh0f(c+h)f(c)h=klim_{h\rightarrow 0}\frac{f(c+h)-f(c)}{h}=k

Consider two points on graph of f(x),[c+h,f(c+h)],[c,f(c)]f(x) , [c+h,f(c+h)] , [c,f(c)]

now slope of any line passing through the points is f(c+h)f(c)(c+h)(c)\frac{f(c+h)-f(c)}{(c+h)-(c)}

As limh0lim_{h\rightarrow 0 } f(c+h)f(c)(c+h)(c)\frac{f(c+h)-f(c)}{(c+h)-(c)} becomes slope of tangent at point x=c , when is also derivative of function at x=c .

f(c)=lim0f(c+h)f(c)hf'(c)=lim_{\rightarrow 0}\frac{f(c+h)-f(c)}{h}

    f(c)=k\implies \boxed{f'(c)=k}


(b)

given , f'(c)=k

    limh0f(c+h)f(c)h=k.............(1)\implies lim_{h\rightarrow 0 }\frac{f(c+h)-f(c)}{h}=k.............(1)\\

Replace c by c-h

    limh0f(ch+h)f(ch)h=k.............(1)    limh0f(c)f(ch)h=k.............(2)\implies lim_{h\rightarrow 0 }\frac{f(c-h+h)-f(c-h)}{h}=k.............(1)\\ \implies lim_{h\rightarrow 0 }\frac{f(c)-f(c-h)}{h}=k.............(2)\\

add (1) and (2)

    limh0f(c+h)f(ch)2h=k\implies\boxed{ lim_{h\rightarrow 0 }\frac{f(c+h)-f(c-h)}{2h}=k}


(c)

We have given ,

f(c)=kf'(c)=k

    limh0f(c+h)f(c)h=k\implies lim_{h\rightarrow 0 }\frac{f(c+h)-f(c)}{h}=k

Replace h by 1n1\over n

    As h0  ,n\implies As \ h\rightarrow 0 \ \ , n\rightarrow \infin

    limn0[f(c+1nf(c)]=k\implies lim_{n\rightarrow 0 }[f(c+\frac{1}{n}-f(c)]=k

Counter example for converse of (b)


(d)

f(x)={2x+3x2x+5l; x<2f(x) = \begin{cases} 2x+3 &\text{; }x\ge 2 \\ x+5 &\text{l; } x <2 \end{cases}


limh0(2+h)f(2h)2hlim _{h\rightarrow 0} \frac{(2+h)-f(2-h)}{2h}

=limh0(2(2+h)+3)f(2h)2h=lim _{h\rightarrow 0} \frac{(2(2+h)+3)-f(2-h)}{2h}

=limh04+2h+32+h52h=lim _{h\rightarrow 0} \frac{4+2h+3-2+h-5}{2h}

=              32=k= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{3}{2}=\boxed{k}

now ,

limh0(c+h)f(c)hlim _{h\rightarrow 0} \frac{(c+h)-f(c)}{h}

=limh0(2+h)f(2)h=lim _{h\rightarrow 0} \frac{(2+h)-f(2)}{h}

=limh02(2+h)+3f(2(2)+3)h=lim _{h\rightarrow 0} \frac{2(2+h)+3-f(2(2)+3)}{h}

=limh02hh=lim _{h\rightarrow 0}\frac{2h}{h}

2k               [k=32]\boxed{2}\ne k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [k=\frac{3}{2}]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS