Find the infimum and supremum of {x ∈ R : x2+2x=3}
{x∈R:x2+2x=3}={x∈R:(x+1)2=4}={1,−3}\{x ∈ R : x^2+2x=3\}=\{x ∈ R : (x+1)^2=4\}=\{1, -3\}{x∈R:x2+2x=3}={x∈R:(x+1)2=4}={1,−3}
Therefore, inf{x∈R:x2+2x=3}=inf{1,−3}=−3\inf \{x ∈ R : x^2+2x=3\}=\inf\{1, -3\}=-3inf{x∈R:x2+2x=3}=inf{1,−3}=−3,
sup{x∈R:x2+2x=3}=sup{1,−3}=1\sup \{x ∈ R : x^2+2x=3\}=\sup\{1, -3\}=1sup{x∈R:x2+2x=3}=sup{1,−3}=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments