Question #222895
Assuming you are a researcher tasked to know about some truths in life. You plan to investigate
the growth or decay of some things that interest you. You are to report what you have researched
and present exponential or logarithmic functions that would model the involved quantities. You
also have to present the graph and explain its characteristics or behavior.
1
Expert's answer
2021-08-04T16:48:46-0400



Modeling population growth and decay ratesTo understand the different modelsthat are used to represent populationdynamics, let’s start by looking at ageneral equation for the population growthrate (change in number of individualsin a population over time):dNdt=rNis the growth rate of the populationin a given instant,Nis populationsize,tis time, andris the per capita rate of increasethat is, how quickly the populationgrows per individual already in thepopulation.If we assume no movement of individualsinto or out of the population is,rjust a function of birth and death rates.\displaystyle \textbf{Modeling population growth and decay rates}\\ \textsf{To understand the different models}\\ \textsf{that are used to represent population}\\ \textsf{dynamics, let's start by looking at a}\\ \textsf{general equation for the population growth}\\ \textsf{rate (change in number of individuals}\\ \textsf{in a population over time):}\\ \frac{\mathrm{d}N}{\mathrm{d}t} = rN\\ \textsf{is the growth rate of the population}\\ \textsf{in a given instant,}\, N\,\textsf{is population}\\ \textsf{size,}\,t\, \textsf{is time, and} \\ r\, \textsf{is the per capita rate of increase}\\ \textsf{that is, how quickly the population}\\ \textsf{grows per individual already in the}\\ \textsf{population.}\\ \textsf{If we assume no movement of individuals}\\ \textsf{into or out of the population is,}\,r\\ \textsf{just a function of birth and death rates.}\\


Derivation of the solution to the differential equation\textbf{Derivation of the solution to the differential equation}\\

dNdt=rN\dfrac{\mathrm{d}N}{\mathrm{d}t} = rN\\


dNN=rdt\dfrac{\mathrm{d}N}{N} = r\, \mathrm{d}t


dNN=rdt\\ \int\,\dfrac{\mathrm{d}N}{N} = \int\,r\, \mathrm{d}t\\


ln(N)=rt+CN=Aert\ln(N) = rt + C\\ N = Ae^{rt}\\


Therefore this means that the growth and decay of some materials increases exponentially as the time increases


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS