∑n=0∞(1+(−1)n)→ divergent Rule: We have ∑k=0∞ak , if limk→∞ak=0 , the suries diverges limn→∞(1+(−1)n)=limn→∞1+limn→∞(−1)n==1+1=2n=2k,k∈N the series diverges \begin{array}{l} \sum_{n=0}^{\infty}\left(1+(-1)^{n}\right) \rightarrow \text { divergent } \\ \text { Rule: We have } \sum_{k=0}^{\infty} a_{k} \text { , } \\ \text { if } \lim _{k \rightarrow \infty} a_{k}=0 \text { , the suries diverges } \\ \lim _{n \rightarrow \infty}\left(1+(-1)^{n}\right)=\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty}(-1)^{n}= \\ =1+1=2 \\ n=2 k, k \in N \\ \text { the series diverges } \end{array}∑n=0∞(1+(−1)n)→ divergent Rule: We have ∑k=0∞ak , if limk→∞ak=0 , the suries diverges limn→∞(1+(−1)n)=limn→∞1+limn→∞(−1)n==1+1=2n=2k,k∈N the series diverges
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment