Answer to Question #184536 in Real Analysis for Leonard

Question #184536
  1. Use the definition of the limit  to show that the sequence (1 + (−1)^n) is divergent.
1
Expert's answer
2021-05-07T12:29:49-0400

n=0(1+(1)n) divergent  Rule: We have k=0ak ,  if limkak=0 , the suries diverges limn(1+(1)n)=limn1+limn(1)n==1+1=2n=2k,kN the series diverges \begin{array}{l} \sum_{n=0}^{\infty}\left(1+(-1)^{n}\right) \rightarrow \text { divergent } \\ \text { Rule: We have } \sum_{k=0}^{\infty} a_{k} \text { , } \\ \text { if } \lim _{k \rightarrow \infty} a_{k}=0 \text { , the suries diverges } \\ \lim _{n \rightarrow \infty}\left(1+(-1)^{n}\right)=\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty}(-1)^{n}= \\ =1+1=2 \\ n=2 k, k \in N \\ \text { the series diverges } \end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment