Question #184137

Prove from first principles (i.e.an ε − δ proof) that f is continuous at the point x = −3.


1
Expert's answer
2021-04-25T17:00:36-0400

Let f(x)=4x23x+2f(x)=4x^2-3x+2

Suppose we wish to show this is continuous using the ϵδ\epsilon − δ definition. Then we need

to control the error f(x)f(x0) in terms of xx0|f(x) − f(x_0)| \text{ in terms of } |x − x_0| . We have


f(x)f(x0)=(4x23x+2)(4x023x0+2)|f(x) − f(x_0)| =|(4x2 − 3x + 2) − (4x^2_0 − 3x_0 + 2)|

        =4x24x023x+3x0+22=4(xx0)(x+x0)3(xx0)=(xx0)(4(x+x0)3)=xx04(x+x0)3xx0(4x+x0+3)=|4x^2 − 4x^2_0 − 3x + 3x_0 + 2 − 2| = |4(x − x0)(x + x0) − 3(x − x0)|\\ = |(x − x_0) (4(x + x_0) − 3)|\\ = |x − x_0| |4(x + x_0) − 3|\\≤ |x − x_0|(4|x + x_0| + 3)\\

     


Thus we have bounded the errorf(x)f(x0) in terms of xx0|f(x) − f(x_0)| \text{ in terms of } |x − x_0| . We now need to


show that given any ϵ>0\epsilon> 0 , we can choose δ > 0 small enough so that if xx0<δ,|x − x_0| < δ,


then f(x)f(x0)<ϵ.|f(x) − f(x_0)| < \epsilon. Indeed, suppose xx0<1|x − x_0| < 1 . Then we have



f(x)f(x0)xx0(4xx0+8x0+3)xx0(8x0+7)|f(x) − f(x_0)| ≤ |x − x_0|(4|x − x_0| + 8|x_0| + 3) ≤ |x − x_0|(8|x_0| + 7)


If we further have xx0<ϵ8x0+7|x − x_0| <\epsilon 8|x_0|+7 , then


f(x)f(x0)xx0(8x0+7)|f(x) − f(x_0)| ≤ |x − x_0|(8|x_0| + 7)


at x0=3,f(x)f(3)x+3(83+7)f(x)f(3)x+3(31)\text{at }x_0=3, |f(x) − f(-3)| ≤ |x +3|(8|-3| + 7)\\ |f(x) − f(-3)| ≤ |x +3|(31)


Hence The function f is continuous.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
10.05.21, 10:33

Dear Zander, please use the panel for submitting a new question.

Zander
03.05.21, 14:53

by using an (ε − N ) argument that lim 3n2 −2n+1 n→∞/ 2n2 − 4 =3/2 ii) Use an (ε − δ) argument to show that f : R → R be the function defined by F(x) (x^2−5x−5 if x≥−1 (x^2+x+1 if x

LATEST TUTORIALS
APPROVED BY CLIENTS