Let f(x)=4x2−3x+2
Suppose we wish to show this is continuous using the ϵ−δ definition. Then we need
to control the error ∣f(x)−f(x0)∣ in terms of ∣x−x0∣ . We have
∣f(x)−f(x0)∣=∣(4x2−3x+2)−(4x02−3x0+2)∣
=∣4x2−4x02−3x+3x0+2−2∣=∣4(x−x0)(x+x0)−3(x−x0)∣=∣(x−x0)(4(x+x0)−3)∣=∣x−x0∣∣4(x+x0)−3∣≤∣x−x0∣(4∣x+x0∣+3)
Thus we have bounded the error∣f(x)−f(x0)∣ in terms of ∣x−x0∣ . We now need to
show that given any ϵ>0 , we can choose δ > 0 small enough so that if ∣x−x0∣<δ,
then ∣f(x)−f(x0)∣<ϵ. Indeed, suppose ∣x−x0∣<1 . Then we have
∣f(x)−f(x0)∣≤∣x−x0∣(4∣x−x0∣+8∣x0∣+3)≤∣x−x0∣(8∣x0∣+7)
If we further have ∣x−x0∣<ϵ8∣x0∣+7 , then
∣f(x)−f(x0)∣≤∣x−x0∣(8∣x0∣+7)
at x0=3,∣f(x)−f(−3)∣≤∣x+3∣(8∣−3∣+7)∣f(x)−f(−3)∣≤∣x+3∣(31)
Hence The function f is continuous.
Comments
Dear Zander, please use the panel for submitting a new question.
by using an (ε − N ) argument that lim 3n2 −2n+1 n→∞/ 2n2 − 4 =3/2 ii) Use an (ε − δ) argument to show that f : R → R be the function defined by F(x) (x^2−5x−5 if x≥−1 (x^2+x+1 if x