a.
L e t ϵ > 0 b e g i v e n . ∣ 3 n 2 + 1 6 n 2 + 2 − 1 2 ∣ = ∣ 3 n 2 + 1 2 ( 3 n 2 + 1 ) − 1 2 ∣ = 0 T a k e δ = ϵ . S o , w h e n ∣ n − 0 ∣ < ϵ = δ ⟹ , ∣ 3 n 2 + 1 6 n 2 + 2 − 1 2 ∣ < ϵ ⟹ l i m n → 0 3 n 2 + 1 6 n 2 + 2 = 1 2 Let \space \epsilon >0 \space be \space given.\newline
\begin{vmatrix}
\frac{3n^2+1}{6n^2+2}-\frac{1}{2}
\end{vmatrix}=\begin{vmatrix}
\frac{3n^2+1}{2(3n^2+1)}-\frac{1}{2}
\end{vmatrix}
=0\newline
Take\space \delta=\epsilon.\newline
So, when \begin{vmatrix}
n-0
\end{vmatrix}<\epsilon=\delta\newline
\implies, \begin{vmatrix}
\frac{3n^2+1}{6n^2+2}-\frac{1}{2}
\end{vmatrix}<\epsilon\newline
\implies lim_{n \to 0}\frac{3n^2+1}{6n^2+2}=\frac{1}{2} L e t ϵ > 0 b e g i v e n . ∣ ∣ 6 n 2 + 2 3 n 2 + 1 − 2 1 ∣ ∣ = ∣ ∣ 2 ( 3 n 2 + 1 ) 3 n 2 + 1 − 2 1 ∣ ∣ = 0 T ak e δ = ϵ . S o , w h e n ∣ ∣ n − 0 ∣ ∣ < ϵ = δ ⟹ , ∣ ∣ 6 n 2 + 2 3 n 2 + 1 − 2 1 ∣ ∣ < ϵ ⟹ l i m n → 0 6 n 2 + 2 3 n 2 + 1 = 2 1
b.
L e t ϵ > 0 b e g i v e n . ∣ n + 1 − n − 0 ∣ R a t i o n a l i s e t h e d e n o m i n a t o r = ∣ 1 n + 1 + n ∣ = 1 n + 1 + n < 1 n + n = 1 2 n < 1 n < ϵ I f n > 1 ϵ n > 1 ϵ 2 I f m i s a p o s i t i v e i n t e g e r > 1 ϵ 2 , t h e n ∣ n + 1 − n − 0 ∣ < ϵ ∀ n ≥ m ⟹ l i m n → 0 n + 1 − n = 0 Let \space \epsilon>0 \space be\space given.\newline\begin{vmatrix}
\sqrt{n+1}-\sqrt{n}-0
\end{vmatrix}\hspace{2cm}Rationalise \space the\space denominator\newline
=\begin{vmatrix}
\frac{1}{\sqrt{n+1}+\sqrt{n}}
\end{vmatrix}
=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}+\sqrt{n}}=\frac{1}{2\sqrt{n}}<\frac{1}{\sqrt{n}}<\epsilon\newline
If\space \sqrt{n}>\frac{1}{\epsilon}\newline
\hspace{0.8cm} {n}>\frac{1}{\epsilon^2}\newline
If\space m \space is\space a\space \space positive \space integer>\frac{1}{\epsilon^2},\space then\newline
\hspace{1cm} \begin{vmatrix}
\sqrt{n+1}-\sqrt{n}-0
\end{vmatrix}<\epsilon\hspace{1.5cm}\forall n\geq m \newline
\implies lim_{n→0}\sqrt{n+1}-\sqrt{n}=0 L e t ϵ > 0 b e g i v e n . ∣ ∣ n + 1 − n − 0 ∣ ∣ R a t i o na l i se t h e d e n o mina t or = ∣ ∣ n + 1 + n 1 ∣ ∣ = n + 1 + n 1 < n + n 1 = 2 n 1 < n 1 < ϵ I f n > ϵ 1 n > ϵ 2 1 I f m i s a p os i t i v e in t e g er > ϵ 2 1 , t h e n ∣ ∣ n + 1 − n − 0 ∣ ∣ < ϵ ∀ n ≥ m ⟹ l i m n → 0 n + 1 − n = 0
Comments