Given "f:[0,1]\\to \\R" is Riemann integrable function.
We need to find
"\\lim_{n\\rightarrow \\infty}\\int_0^1x^{n+1}f(x)\\,dx"Using Integration by parts we get,
"\\frac{f(x)x^{n+2}}{n+2}\\bigg|_0^1-\\frac{1}{n+2}\\int_0^1f'(x)x^{n+2}\\,dx\\\\\n\\implies \\lim_{n\\rightarrow \\infty}\\int_0^1x^{n+1}f(x)\\,dx=0"
Comments
Leave a comment