Find the values of the first and second derivatives of y = 4x2+2x-1 for
x=1.25 from the following table using Lagrange’s interpolation
formula.
x : 1 1.5 2 2.5
y : 5 11 19 29
We have 4 points, so the Lagrange polynomial will be of degree 3. The basic Lagrange polynomials are:Â
"L_1(x)=\\dfrac{(x-1)(x-2)(x-2.5)}{(1.5-1)(1.5-2)(1.5-2.5)}"
"L_2(x)=\\dfrac{(x-1)(x-1.5)(x-2.5)}{(2-1)(2-1.5)(2-2.5)}"
"L_3(x)=\\dfrac{(x-1)(x-1.5)(x-2)}{(2.5-1)(2.5-1.5)(2.5-2)}"
"P(x)=5L_0(x)+11L_1(x)+19L_2(x)+29L_3(x)"
"P(x)=-\\dfrac{20}{3}(x-1.5)(x-2)(x-2.5)"
"+44(x-1)(x-2)(x-2.5)"
"-76(x-1)(x-1.5)(x-2.5)"
"+\\dfrac{116}{3}(x-1)(x-1.5)(x-2)"
"=-\\dfrac{20}{3}x^3+40x^2-\\dfrac{235}{3}x+50"
"+44x^3-242x^2+418x-220"
"-76x^3+380x^2-589x+282"
"\\dfrac{116}{3}x^3-40x^2+174x-116"
The approximation for the "p^{th}" derivative of some function can be found by taking the "p^{th}" derivative of a polynomial approximation of the function
.
"P'(x)=276x-\\dfrac{226}{3}""P''(x)=276"
Comments
Leave a comment