Question #262403

Use Runge-Kutta’s method of order two to determine approximate solutions for y(0;1) and y(0;2)


y′ = f(t,y) = ycos(t) y(0) = 2


1
Expert's answer
2021-11-09T17:00:24-0500
y=f(t,y)=ycosty'=f(t, y)=y\cos t

t0=0,y0=2t_0=0, y_0=2

h=0.1h=0.1


yn+1=yn+k2+O(h3)y_{n+1}=y_n+k_2+O(h^3)

k1=hf(tn,yn)k_1=hf(t_n,y_n)

k2=hf(tn+h2,yn+k12)k_2=hf(t_n+{h \over 2},y_n+{k_1 \over 2})

n=0,t0=0,y0=2,n=0, t_0=0, y_0=2,

f(t0,y0)=2,k1=0.2,f(t_0, y_0)=2, k_1=0.2,

k2=0.1(2+0.22)cos(0+0.12)=0.21cos(0.05)k_2=0.1(2+{0.2 \over 2})\cos(0+{0.1 \over 2})=0.21\cos(0.05)

y1=2+0.21cos(0.05)2.2097y_1=2+0.21\cos(0.05)\approx2.2097


n=1,t1=0.1,y1=2.2097,n=1, t_1=0.1, y_1=2.2097,

f(t1,y1)=2.1987,k1=0.21987,f(t_1, y_1)=2.1987, k_1=0.21987,

k2=0.1(2.2097+0.219872)cos(0.1+0.12)k_2=0.1(2.2097+{0.21987 \over 2})\cos(0.1+{0.1 \over 2})

=0.22936=0.22936

y2=2.2097+0.229362.4391y_2=2.2097+0.22936\approx2.4391

......

Complete the table


ntnynf(tn,yn)yn+100222.209710.12.20972.19872.439120.22.43912.39052.687030.32.68702.56702.951540.42.95152.71853.229550.53.22952.83413.516960.63.51692.90263.808470.73.80842.91284.097780.84.09772.85494.377690.94.37762.72124.6401104.6401\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} n& t_n & y_n & f(t_n,y_n) & y_{n+1} \\ \hline 0 & 0 & 2 & 2 & 2.2097\\ \hdashline 1 & 0.1 & 2.2097 & 2.1987 & 2.4391 \\ \hdashline 2 & 0.2 & 2.4391 & 2.3905 & 2.6870\\ \hdashline 3 & 0.3 & 2.6870 & 2.5670 & 2.9515 \\ \hdashline 4 & 0.4 & 2.9515 & 2.7185 & 3.2295\\ \hdashline 5 & 0.5 & 3.2295 & 2.8341 & 3.5169 \\ \hdashline 6 & 0.6 & 3.5169 & 2.9026 & 3.8084 \\ \hdashline 7 & 0.7 & 3.8084 & 2.9128 & 4.0977 \\ \hdashline 8 & 0.8 & 4.0977 & 2.8549 & 4.3776 \\ \hdashline 9 & 0.9 & 4.3776 & 2.7212 & 4.6401 \\ \hdashline 10 & 4.6401 & \\ \hdashline \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS