Answer to Question #260165 in Quantitative Methods for Yuan

Question #260165

Find the real root of the equation e^x=sinx correct to three decimal places by bisection method

1
Expert's answer
2021-11-03T07:09:41-0400

Rewrite the equation in the form f(x) = 0:

f(x)=exsin(x)=0f(x) = e^x - \sin(x) = 0

Let l denote left side of the interval contained a root, h right side, and m = (h + l)/ 2 the middle of the interval. As f(-4) = -0.73849 < 0, and f(-2) = 1.044633 > 0, get l = -4, and h = 2. Then fill the table. Here depending of the value signe in the next column we define which boundary should be shifted (we change left boundary if f(m) < 0, and right boundar if f(m) > 0)

hllf(l)hf(h)m=(h+l)/2f(m)2.000004.000000.738492.000001.044633.000000.190911.000004.000000.738493.000000.190913.500000.320580.500003.500000.320593.000000.190913.250000.069420.250003.250000.069423.000000.190913.125000.060530.125003.250000.069423.125000.060533.187500.004620.062503.187500.004623.125000.060533.156250.027930.031253.187500.004623.156250.027933.171880.011650.015623.187500.004623.171880.011653.179690.003510.007813.187500.004623.179690.003513.183590.00055\begin{array}{|| c | c | c | c | c | c | c ||} h - l & l & f(l) & h & f(h) & m = (h+l)/2 & f(m) \\ 2.00000 & -4.00000 & -0.73849 & -2.00000 & 1.04463 & -3.00000 & 0.19091 \\ 1.00000 & -4.00000 & -0.73849 & -3.00000 & 0.19091 & -3.50000 & -0.32058 \\ 0.50000 & -3.50000 & -0.32059 & -3.00000 & 0.19091 & -3.25000 & -0.06942 \\ 0.25000 & -3.25000 & -0.06942 & -3.00000 & 0.19091 & -3.12500 & 0.06053 \\ 0.12500 & -3.25000 & -0.06942 & -3.12500 & 0.06053 & -3.18750 & -0.00462 \\ 0.06250 & -3.18750 & -0.00462 & -3.12500 & 0.06053 & -3.15625 & 0.02793 \\ 0.03125 & -3.18750 & -0.00462 & -3.15625 & 0.02793 & -3.17188 & 0.01165 \\ 0.01562 & -3.18750 & -0.00462 & -3.17188 & 0.01165 & -3.17969 & 0.00351 \\ 0.00781 & -3.18750 & -0.00462 & -3.17969 & 0.00351 & -3.18359 & -0.00055 \\ \end{array}

So the root of the equation is -3.18 with 3 decimal digit precision.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment