Question #242720

Use the midpoint approximation method to find the area under the curve 𝑓(𝑥)=1−𝑥2 over

the interval [−1,1].


1
Expert's answer
2021-09-27T18:18:25-0400

The midpoint rule (also known as the midpoint approximation) uses the midpoints of a subinterval:

  

abf(x)dxΔx(f(x0+x12)+f(x1+x22)+f(x2+x32)++f(xn2+xn12)+f(xn1+xn2))\begin{aligned} &\int_{a}^{b} f(x) d x \\ &\approx \Delta x\left(f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{1}+x_{2}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+\cdots+f\left(\frac{x_{n-2}+x_{n-1}}{2}\right)\right. \\ &\left.+f\left(\frac{x_{n-1}+x_{n}}{2}\right)\right) \\ \end{aligned}

 

where  Δx=ban\Delta x=\frac{b-a}{n}

We have that f(x)=1x2,a=1,b=1,f(x)=1-x^{2}, a=-1, b=1 , and n=4n=4

Therefore,  Δx=1(1)4=12\Delta x=\frac{1-(-1)}{4}=\frac{1}{2}

Divide the interval [1,1][-1,1]  into  n=4n=4  subintervals of the length  Δx=12\Delta x=\frac{1}{2}  with the following endpoints:  a=1,12,0,12,1=ba=-1,-\frac{1}{2}, 0, \frac{1}{2}, 1=b

Now, just evaluate the function at the midpoints of the subintervals.

  

f(x0+x12)=f(1122)=f(34)=716=0.4375f(x1+x22)=f(12+02)=f(14)=1516=0.9375f(x2+x32)=f(0+122)=f(14)=1516=0.9375f(x3+x42)=f(12+12)=f(34)=716=0.4375\begin{aligned} &f\left(\frac{x_{0}+x_{1}}{2}\right)=f\left(\frac{-1-\frac{1}{2}}{2}\right)=f\left(-\frac{3}{4}\right)=\frac{7}{16}=0.4375 \\ &f\left(\frac{x_{1}+x_{2}}{2}\right)=f\left(\frac{-\frac{1}{2}+0}{2}\right)=f\left(-\frac{1}{4}\right)=\frac{15}{16}=0.9375 \\ &f\left(\frac{x_{2}+x_{3}}{2}\right)=f\left(\frac{0+\frac{1}{2}}{2}\right)=f\left(\frac{1}{4}\right)=\frac{15}{16}=0.9375 \\ &f\left(\frac{x_{3}+x_{4}}{2}\right)=f\left(\frac{\frac{1}{2}+1}{2}\right)=f\left(\frac{3}{4}\right)=\frac{7}{16}=0.4375 \end{aligned}

Finally, just sum up the above values and multiply by  Δx=12:\Delta x=\frac{1}{2} :

 

12(0.4375+0.9375+0.9375+0.4375)=1.375\frac{1}{2}(0.4375+0.9375+0.9375+0.4375)=1.375   



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS