Answer to Question #246646 in Quantitative Methods for tabia

Question #246646

use the power method to estimatedominant eigenvalue and the corresponding eigenvector for the matrix A =[1 2 1,0 2 5 ,1 0 -1.Start with the vector[1 1 1] and do two iterations.


1
Expert's answer
2021-10-05T17:06:24-0400

A=(121025101)A=\begin{pmatrix} 1 & 2&1 \\ 0 & 2&5\\ 1&0&-1 \end{pmatrix}

1λ2102λ5101λ=(1λ)(2λ)(1λ)+102+λ=\begin{vmatrix} 1-\lambda & 2&1 \\ 0 & 2-\lambda&5\\ 1&0&-1-\lambda \end{vmatrix}=(1-\lambda)(2-\lambda)(-1-\lambda)+10-2+\lambda=

=(23λ+λ2)(1λ)+λ+8=λ3+2λ2+λ2+λ+8==(2-3\lambda+\lambda^2)(-1-\lambda)+\lambda+8=-\lambda^3+2\lambda^2+\lambda-2+\lambda+8=

=λ3+2λ2+2λ+6=0=-\lambda^3+2\lambda^2+2\lambda+6=0

λ1=3.207\lambda_1=3.207

x1=Ax0=(121025101)(111)=(470)x_1=Ax_0=\begin{pmatrix} 1 & 2&1 \\ 0 & 2&5\\ 1&0&-1 \end{pmatrix}\begin{pmatrix} 1 \\ 1\\ 1 \end{pmatrix}=\begin{pmatrix} 4 \\ 7 \\ 0 \end{pmatrix}


x1=x1/x1=(0.49610.86820)x_1=x_1/||x_1||=\begin{pmatrix} 0.4961 \\ 0.8682 \\ 0 \end{pmatrix}


x2=Ax1=(121025101)(0.49610.86820)=(2.23251.73640.4961)x_2=Ax_1=\begin{pmatrix} 1 & 2&1 \\ 0 & 2&5\\ 1&0&-1 \end{pmatrix}\begin{pmatrix} 0.4961 \\ 0.8682 \\ 0 \end{pmatrix}=\begin{pmatrix} 2.2325 \\ 1.7364 \\ 0.4961 \end{pmatrix}


x2=x2/x2=(0.77750.60470.1728)x_2=x_2/||x_2||=\begin{pmatrix} 0.7775 \\ 0.6047 \\ 0.1728 \end{pmatrix}


Ax2=(121025101)(0.77750.60470.1728)=(2.15972.07340.6047)Ax_2=\begin{pmatrix} 1 & 2&1 \\ 0 & 2&5\\ 1&0&-1 \end{pmatrix}\begin{pmatrix} 0.7775 \\ 0.6047 \\ 0.1728 \end{pmatrix}=\begin{pmatrix} 2.1597 \\ 2.0734 \\ 0.6047 \end{pmatrix}


Approximation to the dominant eigenvalue λ1=3.207\lambda_1=3.207 :

λ1=(Ax2)x2x2x2=3.03741.0019=3.032\lambda_1=\frac{(Ax_2)\cdot x_2}{x_2\cdot x_2}=\frac{3.0374}{1.0019}=3.032


Find corresponding eigenvector:

{(1λ)x+2y+z=0(2λ)y+5z=0x(1+λ)z=0\begin{cases} (1-\lambda)x+2y+z=0\\ (2-\lambda)y+5z=0\\ x- (1+\lambda)z=0 \end{cases}


{2.032x+2y+z=01.032y+5z=0x4.032z=0\begin{cases} -2.032x+2y+z=0\\ -1.032y+5z=0\\ x-4.032z=0 \end{cases}


10.16x11.032y=010.16x-11.032y=0

2y7.193z=02y-7.193z=0


x=1.086yx=1.086y

y=3.6zy=3.6z

v1=(10.90.25)v_1=\begin{pmatrix} 1 \\ 0.9 \\ 0.25 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment