A = ( 1 2 1 0 2 5 1 0 − 1 ) A=\begin{pmatrix}
1 & 2&1 \\
0 & 2&5\\
1&0&-1
\end{pmatrix} A = ⎝ ⎛ 1 0 1 2 2 0 1 5 − 1 ⎠ ⎞
∣ 1 − λ 2 1 0 2 − λ 5 1 0 − 1 − λ ∣ = ( 1 − λ ) ( 2 − λ ) ( − 1 − λ ) + 10 − 2 + λ = \begin{vmatrix}
1-\lambda & 2&1 \\
0 & 2-\lambda&5\\
1&0&-1-\lambda
\end{vmatrix}=(1-\lambda)(2-\lambda)(-1-\lambda)+10-2+\lambda= ∣ ∣ 1 − λ 0 1 2 2 − λ 0 1 5 − 1 − λ ∣ ∣ = ( 1 − λ ) ( 2 − λ ) ( − 1 − λ ) + 10 − 2 + λ =
= ( 2 − 3 λ + λ 2 ) ( − 1 − λ ) + λ + 8 = − λ 3 + 2 λ 2 + λ − 2 + λ + 8 = =(2-3\lambda+\lambda^2)(-1-\lambda)+\lambda+8=-\lambda^3+2\lambda^2+\lambda-2+\lambda+8= = ( 2 − 3 λ + λ 2 ) ( − 1 − λ ) + λ + 8 = − λ 3 + 2 λ 2 + λ − 2 + λ + 8 =
= − λ 3 + 2 λ 2 + 2 λ + 6 = 0 =-\lambda^3+2\lambda^2+2\lambda+6=0 = − λ 3 + 2 λ 2 + 2 λ + 6 = 0
λ 1 = 3.207 \lambda_1=3.207 λ 1 = 3.207
x 1 = A x 0 = ( 1 2 1 0 2 5 1 0 − 1 ) ( 1 1 1 ) = ( 4 7 0 ) x_1=Ax_0=\begin{pmatrix}
1 & 2&1 \\
0 & 2&5\\
1&0&-1
\end{pmatrix}\begin{pmatrix}
1 \\
1\\
1
\end{pmatrix}=\begin{pmatrix}
4 \\
7 \\
0
\end{pmatrix} x 1 = A x 0 = ⎝ ⎛ 1 0 1 2 2 0 1 5 − 1 ⎠ ⎞ ⎝ ⎛ 1 1 1 ⎠ ⎞ = ⎝ ⎛ 4 7 0 ⎠ ⎞
x 1 = x 1 / ∣ ∣ x 1 ∣ ∣ = ( 0.4961 0.8682 0 ) x_1=x_1/||x_1||=\begin{pmatrix}
0.4961 \\
0.8682 \\
0
\end{pmatrix} x 1 = x 1 /∣∣ x 1 ∣∣ = ⎝ ⎛ 0.4961 0.8682 0 ⎠ ⎞
x 2 = A x 1 = ( 1 2 1 0 2 5 1 0 − 1 ) ( 0.4961 0.8682 0 ) = ( 2.2325 1.7364 0.4961 ) x_2=Ax_1=\begin{pmatrix}
1 & 2&1 \\
0 & 2&5\\
1&0&-1
\end{pmatrix}\begin{pmatrix}
0.4961 \\
0.8682 \\
0
\end{pmatrix}=\begin{pmatrix}
2.2325 \\
1.7364 \\
0.4961
\end{pmatrix} x 2 = A x 1 = ⎝ ⎛ 1 0 1 2 2 0 1 5 − 1 ⎠ ⎞ ⎝ ⎛ 0.4961 0.8682 0 ⎠ ⎞ = ⎝ ⎛ 2.2325 1.7364 0.4961 ⎠ ⎞
x 2 = x 2 / ∣ ∣ x 2 ∣ ∣ = ( 0.7775 0.6047 0.1728 ) x_2=x_2/||x_2||=\begin{pmatrix}
0.7775 \\
0.6047 \\
0.1728
\end{pmatrix} x 2 = x 2 /∣∣ x 2 ∣∣ = ⎝ ⎛ 0.7775 0.6047 0.1728 ⎠ ⎞
A x 2 = ( 1 2 1 0 2 5 1 0 − 1 ) ( 0.7775 0.6047 0.1728 ) = ( 2.1597 2.0734 0.6047 ) Ax_2=\begin{pmatrix}
1 & 2&1 \\
0 & 2&5\\
1&0&-1
\end{pmatrix}\begin{pmatrix}
0.7775 \\
0.6047 \\
0.1728
\end{pmatrix}=\begin{pmatrix}
2.1597 \\
2.0734 \\
0.6047
\end{pmatrix} A x 2 = ⎝ ⎛ 1 0 1 2 2 0 1 5 − 1 ⎠ ⎞ ⎝ ⎛ 0.7775 0.6047 0.1728 ⎠ ⎞ = ⎝ ⎛ 2.1597 2.0734 0.6047 ⎠ ⎞
Approximation to the dominant eigenvalue λ 1 = 3.207 \lambda_1=3.207 λ 1 = 3.207 :
λ 1 = ( A x 2 ) ⋅ x 2 x 2 ⋅ x 2 = 3.0374 1.0019 = 3.032 \lambda_1=\frac{(Ax_2)\cdot x_2}{x_2\cdot x_2}=\frac{3.0374}{1.0019}=3.032 λ 1 = x 2 ⋅ x 2 ( A x 2 ) ⋅ x 2 = 1.0019 3.0374 = 3.032
Find corresponding eigenvector:
{ ( 1 − λ ) x + 2 y + z = 0 ( 2 − λ ) y + 5 z = 0 x − ( 1 + λ ) z = 0 \begin{cases}
(1-\lambda)x+2y+z=0\\
(2-\lambda)y+5z=0\\
x- (1+\lambda)z=0
\end{cases} ⎩ ⎨ ⎧ ( 1 − λ ) x + 2 y + z = 0 ( 2 − λ ) y + 5 z = 0 x − ( 1 + λ ) z = 0
{ − 2.032 x + 2 y + z = 0 − 1.032 y + 5 z = 0 x − 4.032 z = 0 \begin{cases}
-2.032x+2y+z=0\\
-1.032y+5z=0\\
x-4.032z=0
\end{cases} ⎩ ⎨ ⎧ − 2.032 x + 2 y + z = 0 − 1.032 y + 5 z = 0 x − 4.032 z = 0
10.16 x − 11.032 y = 0 10.16x-11.032y=0 10.16 x − 11.032 y = 0
2 y − 7.193 z = 0 2y-7.193z=0 2 y − 7.193 z = 0
x = 1.086 y x=1.086y x = 1.086 y
y = 3.6 z y=3.6z y = 3.6 z
v 1 = ( 1 0.9 0.25 ) v_1=\begin{pmatrix}
1 \\
0.9 \\
0.25
\end{pmatrix} v 1 = ⎝ ⎛ 1 0.9 0.25 ⎠ ⎞
Comments
Leave a comment