Question #233952

1.    Solve cos(x)=2x, using fixed point iteration to 5 decimal places             

Do 5 iterations.    Solve , using fixed point iteration to 5 decimal places       



1
Expert's answer
2021-09-07T15:36:14-0400

Given that cos(x)=2xcos(x)=2x

Applying fixed iteration method:

x=cos(x)2xn+1=cos(xn)2x=\frac{cos(x)}{2}\\ \therefore x_{n+1}=\frac{cos(x_n)}{2}\\

Take x0=1x_0=1\\

So,

x1=cos 12=0.27015x2=cos(x1)2=cos(0.27015)2=0.48186x3=cos(x2)2=cos(0.48186)2=0.44306x4=cos(x3)2=cos(0.44306)2=0.45172x5=cos(x4)2=cos(0.45172)2=0.44984x_1=\frac{cos \ 1}{2}=0.27015\\ x_2=\frac{cos(x_1)}{2}=\frac{cos(0.27015)}{2}=0.48186\\ x_3=\frac{cos(x_2)}{2}=\frac{cos(0.48186)}{2}=0.44306\\ x_4=\frac{cos(x_3)}{2}=\frac{cos(0.44306)}{2}=0.45172\\ x_5=\frac{cos(x_4)}{2}=\frac{cos(0.45172)}{2}=0.44984\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS