P ( x ) = 2 x 5 − x 4 + x 2 − 1 P(x)=2x^5-x^4+x^2-1 P ( x ) = 2 x 5 − x 4 + x 2 − 1
P ( x 1 ) = P ( 0 ) = − 1 P(x_1)=P(0)=-1 P ( x 1 ) = P ( 0 ) = − 1
P ( x 2 ) = P ( − 3 5 ) = − 2 ⋅ ( 3 5 ) 2 ⋅ 3 5 — ( 3 5 ) 2 + 3 5 − 1 = − 18 25 ⋅ 3 5 − 19 25 P(x_2)=P\big(-\sqrt{\tfrac{3}{5}}\big)=-2\cdot \big(\tfrac{3}{5}\big)^2\cdot \sqrt{\tfrac{3}{5}}—\big(\tfrac{3}{5}\big)^2+\tfrac{3}{5}-1=-\tfrac{18}{25}\cdot \sqrt{\tfrac{3}{5}}-\tfrac{19}{25} P ( x 2 ) = P ( − 5 3 ) = − 2 ⋅ ( 5 3 ) 2 ⋅ 5 3 — ( 5 3 ) 2 + 5 3 − 1 = − 25 18 ⋅ 5 3 − 25 19
P ( x 3 ) = P ( 3 5 ) = 2 ⋅ ( 3 5 ) 2 ⋅ 3 5 — ( 3 5 ) 2 + 3 5 − 1 = 18 25 ⋅ 3 5 − 19 25 P(x_3)=P\big(\sqrt{\tfrac{3}{5}}\big)=2\cdot \big(\tfrac{3}{5}\big)^2\cdot \sqrt{\tfrac{3}{5}}—\big(\tfrac{3}{5}\big)^2+\tfrac{3}{5}-1=\tfrac{18}{25}\cdot \sqrt{\tfrac{3}{5}}-\tfrac{19}{25} P ( x 3 ) = P ( 5 3 ) = 2 ⋅ ( 5 3 ) 2 ⋅ 5 3 — ( 5 3 ) 2 + 5 3 − 1 = 25 18 ⋅ 5 3 − 25 19
∫ − 1 1 P ( x ) d x ≈ ∑ i = 1 3 w i P ( x i ) = w 1 P ( x 1 ) + w 2 P ( x 2 ) + w 3 P ( x 3 ) = 8 9 ⋅ ( − 1 ) + 5 9 ( P ( x 2 ) + P ( x 3 ) ) = − 8 9 + 5 9 ⋅ ( − 38 25 ) = − 8 9 − 38 45 = − 40 + 38 45 = − 78 45 = − 26 15 = − 1 11 15 \int\limits_{-1}^1P(x)dx\approx\sum_{i=1}^3w_iP(x_i)=w_1P(x_1)+w_2P(x_2)+w_3P(x_3)=\tfrac{8}{9}\cdot (-1)+\tfrac{5}{9}(P(x_2)+P(x_3))=-\tfrac{8}{9}+\tfrac{5}{9}\cdot \big(-\tfrac{38}{25}\big)=-\tfrac{8}{9}-\tfrac{38}{45}=-\tfrac{40+38}{45}=-\tfrac{78}{45}=-\tfrac{26}{15}=-1\tfrac{11}{15} − 1 ∫ 1 P ( x ) d x ≈ ∑ i = 1 3 w i P ( x i ) = w 1 P ( x 1 ) + w 2 P ( x 2 ) + w 3 P ( x 3 ) = 9 8 ⋅ ( − 1 ) + 9 5 ( P ( x 2 ) + P ( x 3 )) = − 9 8 + 9 5 ⋅ ( − 25 38 ) = − 9 8 − 45 38 = − 45 40 + 38 = − 45 78 = − 15 26 = − 1 15 11
Answer: ∫ − 1 1 P ( x ) d x ≈ − 1 11 15 \int\limits_{-1}^1P(x)dx\approx-1\tfrac{11}{15} − 1 ∫ 1 P ( x ) d x ≈ − 1 15 11 .
Comments