∫ a b f ( t ) d t \displaystyle\int_{a}^{b}f(t)dt ∫ a b f ( t ) d t
≈ Δ t 3 ( f ( t 0 ) + 4 f ( t 1 ) + 2 f ( t 2 ) + 4 f ( t 3 ) \approx\dfrac{\Delta t}{3}\big(f(t_0)+4f(t_1)+2f(t_2)+4f(t_3) ≈ 3 Δ t ( f ( t 0 ) + 4 f ( t 1 ) + 2 f ( t 2 ) + 4 f ( t 3 )
+ 2 f ( t 4 ) + . . . + 4 f ( t n − 2 ) + 2 f ( t n − 1 ) + f ( t n ) ) +2f(t_4)+...+4f(t_{n-2})+2f(t_{n-1})+f(t_n)\big) + 2 f ( t 4 ) + ... + 4 f ( t n − 2 ) + 2 f ( t n − 1 ) + f ( t n ) )
Δ t = b − a n \Delta t=\dfrac{b-a}{n} Δ t = n b − a We have that f ( t ) = sin t , a = 0 , b = π / 2 , n = 4. f(t)=\sin t, a=0, b=\pi/2, n=4. f ( t ) = sin t , a = 0 , b = π /2 , n = 4.
Therefore
Δ t = π / 2 − 0 4 = π / 8 \Delta t=\dfrac{\pi/2-0}{4}=\pi/8 Δ t = 4 π /2 − 0 = π /8 Divide the interval [ 0 , π / 2 ] [0, \pi/2] [ 0 , π /2 ] into n = 4 n=4 n = 4 subintervals of the length Δ t = π / 8 Δt=π/8 Δ t = π /8 with the following endpoints: a = 0 , π / 8 , π / 4 , 3 π / 8 , π / 2 = b . a=0, \pi/8, \pi/4, 3\pi/8, \pi/2=b. a = 0 , π /8 , π /4 , 3 π /8 , π /2 = b .
Evaluate the function at these endpoints
f ( t 0 ) = f ( 0 ) = sin ( 0 ) = 0 f(t_0)=f(0)=\sin(0)=0 f ( t 0 ) = f ( 0 ) = sin ( 0 ) = 0
4 f ( t 1 ) = 4 f ( π / 8 ) = 4 sin ( π / 8 ) 4f(t_1)=4f(\pi/8)=4\sin(\pi/8) 4 f ( t 1 ) = 4 f ( π /8 ) = 4 sin ( π /8 )
≈ 1.530733729460359 ≈1.530733729460359 ≈ 1.530733729460359
2 f ( t 2 ) = 2 f ( π / 4 ) = 2 sin ( π / 4 ) = 2 2f(t_2)=2f(\pi/4)=2\sin(\pi/4)=\sqrt{2} 2 f ( t 2 ) = 2 f ( π /4 ) = 2 sin ( π /4 ) = 2
≈ 1.414213562373095 \approx1.414213562373095 ≈ 1.414213562373095
4 f ( t 3 ) = 4 f ( 3 π / 8 ) = 4 sin ( 3 π / 8 ) 4f(t_3)=4f(3\pi/8)=4\sin(3\pi/8) 4 f ( t 3 ) = 4 f ( 3 π /8 ) = 4 sin ( 3 π /8 )
≈ 3.695518130045147 ≈3.695518130045147 ≈ 3.695518130045147
f ( t 4 ) = f ( π / 2 ) = sin ( π / 2 ) = 1 f(t_4)=f(\pi/2)=\sin(\pi/2)=1 f ( t 4 ) = f ( π /2 ) = sin ( π /2 ) = 1
Therefore
∫ 0 π / 2 sin t d t \displaystyle\int_{0}^{\pi/2}\sin t dt ∫ 0 π /2 sin t d t
≈ ( π / 12 ) ( 0 + 1.530733729460359 \approx(\pi/12)(0+1.530733729460359 ≈ ( π /12 ) ( 0 + 1.530733729460359
+ 1.414213562373095 +1.414213562373095 + 1.414213562373095
+ 3.695518130045147 + 1 ) +3.695518130045147+1) + 3.695518130045147 + 1 )
≈ 1.000134584974194 \approx1.000134584974194 ≈ 1.000134584974194
∫ 0 π / 2 sin t d t ≈ 1.000134584974194 \displaystyle\int_{0}^{\pi/2}\sin t dt\approx1.000134584974194 ∫ 0 π /2 sin t d t ≈ 1.000134584974194
Comments