Evaluate integral of a = 0 and b =Ï€\2 sin(t)dt by applying Simpsons rule with four equal intervals
"\\approx\\dfrac{\\Delta t}{3}\\big(f(t_0)+4f(t_1)+2f(t_2)+4f(t_3)"
"+2f(t_4)+...+4f(t_{n-2})+2f(t_{n-1})+f(t_n)\\big)"
"\\Delta t=\\dfrac{b-a}{n}"
We have that "f(t)=\\sin t, a=0, b=\\pi\/2, n=4."
Therefore
Divide the interval "[0, \\pi\/2]"  into "n=4" subintervals of the length "\u0394t=\u03c0\/8" with the following endpoints: "a=0, \\pi\/8, \\pi\/4, 3\\pi\/8, \\pi\/2=b."
 Evaluate the function at these endpoints
"\u22481.530733729460359"
"\\approx1.414213562373095"
"\u22483.695518130045147"
"f(t_4)=f(\\pi\/2)=\\sin(\\pi\/2)=1"
Therefore
"\\approx(\\pi\/12)(0+1.530733729460359"
"+1.414213562373095"
"+3.695518130045147+1)"
"\\approx1.000134584974194"
"\\displaystyle\\int_{0}^{\\pi\/2}\\sin t dt\\approx1.000134584974194"
Comments
Leave a comment