Analytical solution:
y′=cosx
y′(π/4)=0.7071067
Compute function values:
y(xi−2)=sin(4π−122π)=0.2588190
y(xi−1)=sin(4π−12π)=0.5
y(xi)=sin(4π)=0.7071067
y(xi+1)=sin(4π+12π)=0.8660254
y(xi+2)=sin(4π+122π)=0.9659258
Forward difference O(h)
y′(xi)=hy(xi+1)−y(xi)
y′(π/4)=π/120.8660254−0.7071067=0.6070247
Error is:
εt=∣TrueValueTrueValue−ApproxValue∣⋅100
εt=∣0.70710670.7071067−0.6070247∣⋅100=14.15%
Forward difference O(h2)
y′(xi)=2hy(xi+2)+4y(xi+1)−3y(xi)
y′(π/4)=2π/120.9659258+4⋅0.8660254−3⋅0.7071067=4.4093061
εt=0.7071067∣0.7071067−4.4093061∣⋅100=523.57%
Backward difference O(h)
y′(xi)=hy(xi)−y(xi−1)
y′(π/4)=π/120.7071067−0.5=0.7910893
εt=0.7071067∣0.7071067−0.7910893∣⋅100=11.88%
Backward difference O(h2)
y′(xi)=2h3y(xi)−4y(xi−1)+y(xi−2)
y′(π/4)=2π/123⋅0.7071067−4⋅0.5+0.2588190=0.7260122
εt=0.7071067∣0.7071067−0.7260122∣⋅100=2.67%
Central difference O(h2)
y′(xi)=2hy(xi+1)−y(xi−1)
y′(π/4)=2π/120.8660254−0.5=0.6990570
εt=0.7071067∣0.7071067−0.6990570∣⋅100=1.14%
Central difference O(h4)
y′(xi)=12h−y(xi+2)+8y(xi+1)−8y(xi−1)+y(xi−2)
y′(π/4)=12π/12−0.9659258+8⋅0.8660254−8⋅0.5+0.2588190=0.7069969
εt=0.7071067∣0.7071067−0.7069969∣⋅100=0.02%
Comments