(a) Find the polynomial degree 3 in term of three linear factors if P(1) = P(-2) = 0,
P(3) = 200 and P(-1) = 8.
(b) Find the partial fraction for
12x³ + 1/P(x)
a)
Let "P_3(x)=a(x-x_1)(x-x_2)(x-x_3)."
Given "x_1=1, x_2=-2." Then
"P(3)=200"
"a(3-x_3)=20"
"P(-1)=8"
"a(-1-x_3)=-4"
"\\dfrac{3-x_3}{-1-x_3}=\\dfrac{20}{-4}"
"3-x_3=5+5x_3"
"x_3=-\\dfrac{1}{3}"
"a(-1-(-\\dfrac{1}{3}))=-4"
"a=6"
"P_3(x)=6(x-1)(x+2)(x+\\dfrac{1}{3})"
"=(6x+2)(x^2+x-2)"
"=6x^3+6x^2-12x+2x^2+2x-4"
Answer:
"P(x)=6x^3+8x^2-10x-4"b)
"=\\dfrac{A}{6}+\\dfrac{B}{x-1}+\\dfrac{C}{x+2}+\\dfrac{D}{x+\\dfrac{1}{3}}"
"A(x-1)(x+2)(x+\\dfrac{1}{3})+6B(x+2)(x+\\dfrac{1}{3})"
"+6C(x-1)(x+\\dfrac{1}{3})+6D(x-1)(x+2)"
"=12x^3+1"
"x=1:6B(3)(\\dfrac{4}{3})=12+1=>B=\\dfrac{13}{24}"
"x=-2: 6C(-3)(-\\dfrac{5}{3})=-96+1=>C=-\\dfrac{19}{6}"
"x=-\\dfrac{1}{3}: 6D(-\\dfrac{4}{3})(\\dfrac{5}{3})=-\\dfrac{4}{9}+1=>D=-\\dfrac{1}{24}"
"x=0:-\\dfrac{2}{3}A+\\dfrac{2}{3}(\\dfrac{13}{4})-\\dfrac{1}{3}(-19)-2(-\\dfrac{1}{4})=1"
"A=12"
Answer:
"\\dfrac{12x^3+1}{6x^3+8x^2-10x-4}=2+\\dfrac{13}{24(x-1)}""-\\dfrac{19}{6(x+2)}-\\dfrac{1}{24(x+\\dfrac{1}{3})}"
Comments
Leave a comment