A polynomials is defined by P(x) = mx³ + mx² + mx + n where m and n are non-zero real constants. Given that x = -n is a root of P(x). Determine the range of the possible values of m.
"n\\not=0"
"m=\\dfrac{1}{n^2-n+1}"
Let "m=f(n)=\\dfrac{1}{n^2-n+1}, mn\\not=0"
"=(n-\\dfrac{1}{2})^2+\\dfrac{3}{4}>0,n\\in \\R"
"f'(n)=-\\dfrac{2n-1}{(n^2-n+1)^2}"
Find the critical number(s)
If "n\\in(-\\infin, 0)\\cup(0, \\dfrac{1}{2})," then "f'(n)>0, f(n)" increases.
If "n\\in(\\dfrac{1}{2},\\infin)," then "f'(n)<0, f(n)" decreases.
The function "f(n)" has a local maximum at "n=\\dfrac{1}{2}."
"\\lim\\limits_{n\\to0^-}f(n)=\\lim\\limits_{n\\to0^+}f(n)=1"
"\\lim\\limits_{n\\to-\\infin}f(n)=\\lim\\limits_{n\\to\\infin}f(n)=0"
Then "m\\in(0, \\dfrac{4}{3}]"
Comments
Leave a comment