Question #262152
a) given f(x)= { 2x²+1, x<-2
               { ax-1, x≥-2
Determine the value of a if 
lim f(x) exists.
x -2

b) find the value of a such
 that lim 2x²-ax-14/x²-2x-3 
      x -4

...esists. hence determine the value of the limit


1
Expert's answer
2021-11-09T16:24:33-0500

a)


limx2f(x)=2(2)2+1=9\lim\limits_{x\to-2^{-}}f(x)=2(-2)^2+1=9

limx2+f(x)=a(2)1=2a1\lim\limits_{x\to-2^{+}}f(x)=a(-2)-1=-2a-1

limx2f(x)=limx2+f(x)=limx2f(x)\lim\limits_{x\to-2^{-}}f(x)=\lim\limits_{x\to-2^{+}}f(x)=\lim\limits_{x\to-2}f(x)

9=2a19=-2a-1

a=5a=5

b)


limx12x2ax14x22x3=limx22x2ax14(x+1)(x3)\lim\limits_{x\to-1}\dfrac{2x^2-ax-14}{x^2-2x-3}=\lim\limits_{x\to-2}\dfrac{2x^2-ax-14}{(x+1)(x-3)}

2(1)2a(1)14=0=>a=122(-1)^2-a(-1)-14=0=>a=12

2x2ax14=2x212x142x^2-ax-14=2x^2-12x-14

=2(x26x7)=2(x+1)(x7)=2(x^2-6x-7)=2(x+1)(x-7)

limx12x212x14x22x3=limx22(x+1)(x7)(x+1)(x3)\lim\limits_{x\to-1}\dfrac{2x^2-12x-14}{x^2-2x-3}=\lim\limits_{x\to-2}\dfrac{2(x+1)(x-7)}{(x+1)(x-3)}

=limx22(x7)x3=2(17)13=4=\lim\limits_{x\to-2}\dfrac{2(x-7)}{x-3}=\dfrac{2(-1-7)}{-1-3}=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS