a) given f(x)= { 2x²+1, x<-2
{ ax-1, x≥-2
Determine the value of a if
lim f(x) exists.
x -2
b) find the value of a such
that lim 2x²-ax-14/x²-2x-3
x -4
...esists. hence determine the value of the limit
a)
"\\lim\\limits_{x\\to-2^{+}}f(x)=a(-2)-1=-2a-1"
"\\lim\\limits_{x\\to-2^{-}}f(x)=\\lim\\limits_{x\\to-2^{+}}f(x)=\\lim\\limits_{x\\to-2}f(x)"
"9=-2a-1"
"a=5"
b)
"2(-1)^2-a(-1)-14=0=>a=12"
"2x^2-ax-14=2x^2-12x-14"
"=2(x^2-6x-7)=2(x+1)(x-7)"
"\\lim\\limits_{x\\to-1}\\dfrac{2x^2-12x-14}{x^2-2x-3}=\\lim\\limits_{x\\to-2}\\dfrac{2(x+1)(x-7)}{(x+1)(x-3)}"
"=\\lim\\limits_{x\\to-2}\\dfrac{2(x-7)}{x-3}=\\dfrac{2(-1-7)}{-1-3}=4"
Comments
Leave a comment