Answer to Question #232317 in Math for abi

Question #232317

L-1{ s+1 / (s2+2s+s)2 }


1
Expert's answer
2021-09-07T03:15:02-0400
s+1(s2+2s+s)2=s+1(s2+3s)2\dfrac{s+1}{(s^2+2s+s)^2}=\dfrac{s+1}{(s^2+3s)^2}

=As+Bs2+Cs+3+D(s+3)2=\dfrac{A}{s}+\dfrac{B}{s^2}+\dfrac{C}{s+3}+\dfrac{D}{(s+3)^2}

=As(s+3)2+B(s+3)2+Cs2(s+3)+Ds2(s2+3s)2=\dfrac{As(s+3)^2+B(s+3)^2+Cs^2(s+3)+Ds^2}{(s^2+3s)^2}

=As3+6As2+9As+Bs2+6Bs+9B+Cs3+3Cs2+Ds2(s2+3s)2=\dfrac{As^3+6As^2+9As+Bs^2+6Bs+9B+Cs^3+3Cs^2+Ds^2}{(s^2+3s)^2}

s3:A+C=0s^3:A+C=0


s2:6A+B+3C+D=0s^2:6A+B+3C+D=0


s1:9A+6B=1s^1:9A+6B=1


s0:9B=1s^0:9B=1



A=127,B=19,C=127,D=29A=\dfrac{1}{27}, B=\dfrac{1}{9}, C=-\dfrac{1}{27}, D=-\dfrac{2}{9}


L1(s+1(s2+2s+s)2)=127L1(1s)+19L1(1s2)L^{-1}(\dfrac{s+1}{(s^2+2s+s)^2})=\dfrac{1}{27}L^{-1}(\dfrac{1}{s})+\dfrac{1}{9}L^{-1}(\dfrac{1}{s^2})

127L1(1s+3)29L1(1(s+3)2)-\dfrac{1}{27}L^{-1}(\dfrac{1}{s+3})-\dfrac{2}{9}L^{-1}(\dfrac{1}{(s+3)^2})

=127+t9127e3t29te3t=\dfrac{1}{27}+\dfrac{t}{9}-\dfrac{1}{27}e^{-3t}-\dfrac{2}{9}te^{-3t}



L1(s+1(s2+2s+s)2)=127+t9127e3t29te3tL^{-1}(\dfrac{s+1}{(s^2+2s+s)^2})=\dfrac{1}{27}+\dfrac{t}{9}-\dfrac{1}{27}e^{-3t}-\dfrac{2}{9}te^{-3t}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment