L{e2t(t-1)2}
"=\\displaystyle\\int_{0}^{\\infin}e^{2t}(t-1)^2e^{-st}dt"
"\\int e^{(2-s)t}(t-1)^2dt=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)^2"
"+\\dfrac{2}{s-2}\\int e^{(2-s)t}(t-1)dt"
"+\\dfrac{1}{s-2}\\int e^{(2-s)t}dt"
"=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)-\\dfrac{e^{(2-s)t}}{(s-2)^2}+C_1"
"-\\dfrac{2e^{(2-s)t}}{(s-2)^2}(t-1)-\\dfrac{2e^{(2-s)t}}{(s-2)^3}+C"
"=\\dfrac{1}{s-2}-\\dfrac{2}{(s-2)^2}+\\dfrac{2}{(s-2)^3}"
"=\\dfrac{s^2-4s+4-2s+4+2}{(s-2)^3}"
"=\\dfrac{s^2-6s+10}{(s-2)^3}"
"L\\{e^{2t}(t-1)^2\\}=\\dfrac{1}{s-2}-\\dfrac{2}{(s-2)^2}+\\dfrac{2}{(s-2)^3}"
"=\\dfrac{s^2-6s+10}{(s-2)^3}"
Comments
Leave a comment