Answer to Question #232313 in Math for abi

Question #232313

L{e2t(t-1)2}


1
Expert's answer
2021-09-02T07:25:35-0400
"F(s)=L\\{f(t)\\}=\\displaystyle\\int_{0}^{\\infin}f(t)e^{-st}dt"

"=\\displaystyle\\int_{0}^{\\infin}e^{2t}(t-1)^2e^{-st}dt"

"\\int e^{(2-s)t}(t-1)^2dt=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)^2"

"+\\dfrac{2}{s-2}\\int e^{(2-s)t}(t-1)dt"



"\\int e^{(2-s)t}(t-1)dt=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)"

"+\\dfrac{1}{s-2}\\int e^{(2-s)t}dt"

"=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)-\\dfrac{e^{(2-s)t}}{(s-2)^2}+C_1"


"\\int e^{(2-s)t}(t-1)^2dt=-\\dfrac{e^{(2-s)t}}{s-2}(t-1)^2"

"-\\dfrac{2e^{(2-s)t}}{(s-2)^2}(t-1)-\\dfrac{2e^{(2-s)t}}{(s-2)^3}+C"


"F(s)=L\\{f(t)\\}=\\lim\\limits_{A\\to \\infin}\\displaystyle\\int_{0}^{A}e^{(2-s)t}(1-t)^2dt"

"=\\dfrac{1}{s-2}-\\dfrac{2}{(s-2)^2}+\\dfrac{2}{(s-2)^3}"

"=\\dfrac{s^2-4s+4-2s+4+2}{(s-2)^3}"

"=\\dfrac{s^2-6s+10}{(s-2)^3}"

"L\\{e^{2t}(t-1)^2\\}=\\dfrac{1}{s-2}-\\dfrac{2}{(s-2)^2}+\\dfrac{2}{(s-2)^3}"

"=\\dfrac{s^2-6s+10}{(s-2)^3}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS