Answer to Question #196987 in Math for Hanata yuji

Question #196987

If f(t)= eiwt at the interval (-π, π) determine fourier series of the f(t) ?


1
Expert's answer
2021-05-24T16:06:17-0400

Here the half-period is "L=\\pi." Therefore, the coefficient "c_0" is


"c_0=\\dfrac{1}{2\\pi}\\displaystyle\\int_{-\\pi}^{\\pi}f(t)dt=\\dfrac{1}{2\\pi}\\displaystyle\\int_{-\\pi}^{\\pi}e^{iwt}dt"

"=\\dfrac{i}{2iw\\pi}(e^{iw\\pi}-e^{-iw\\pi})=\\dfrac{\\sin{(w\\pi)}}{w\\pi}"

For "n\\not=0"


"c_n=\\dfrac{1}{2\\pi}\\displaystyle\\int_{-\\pi}^{\\pi}f(t)e^{-{in\\pi t \\over \\pi}}dt=\\dfrac{1}{2\\pi}\\displaystyle\\int_{-\\pi}^{\\pi}e^{iwt}e^{-int}dt"

"=\\dfrac{1}{2\\pi i(w-n)}(e^{i(w-n)\\pi}-e^{-e^{i(w-n)\\pi}})"

"=\\dfrac{\\sin((w-n)\\pi)}{ (w-n)\\pi}"


"f(t)=e^{iwt}=\\dfrac{\\sin{(w\\pi)}}{w\\pi}+\\displaystyle\\sum_{-\\infin}^{\\infin}\\dfrac{\\sin((w-n)\\pi)}{ (w-n)\\pi}e^{int}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog