Answer to Question #196987 in Math for Hanata yuji

Question #196987

If f(t)= eiwt at the interval (-π, π) determine fourier series of the f(t) ?


1
Expert's answer
2021-05-24T16:06:17-0400

Here the half-period is L=π.L=\pi. Therefore, the coefficient c0c_0 is


c0=12πππf(t)dt=12πππeiwtdtc_0=\dfrac{1}{2\pi}\displaystyle\int_{-\pi}^{\pi}f(t)dt=\dfrac{1}{2\pi}\displaystyle\int_{-\pi}^{\pi}e^{iwt}dt

=i2iwπ(eiwπeiwπ)=sin(wπ)wπ=\dfrac{i}{2iw\pi}(e^{iw\pi}-e^{-iw\pi})=\dfrac{\sin{(w\pi)}}{w\pi}

For n0n\not=0


cn=12πππf(t)einπtπdt=12πππeiwteintdtc_n=\dfrac{1}{2\pi}\displaystyle\int_{-\pi}^{\pi}f(t)e^{-{in\pi t \over \pi}}dt=\dfrac{1}{2\pi}\displaystyle\int_{-\pi}^{\pi}e^{iwt}e^{-int}dt

=12πi(wn)(ei(wn)πeei(wn)π)=\dfrac{1}{2\pi i(w-n)}(e^{i(w-n)\pi}-e^{-e^{i(w-n)\pi}})

=sin((wn)π)(wn)π=\dfrac{\sin((w-n)\pi)}{ (w-n)\pi}


f(t)=eiwt=sin(wπ)wπ+sin((wn)π)(wn)πeintf(t)=e^{iwt}=\dfrac{\sin{(w\pi)}}{w\pi}+\displaystyle\sum_{-\infin}^{\infin}\dfrac{\sin((w-n)\pi)}{ (w-n)\pi}e^{int}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment