Here the half-period is L=π. Therefore, the coefficient c0 is
c0=2π1∫−ππf(t)dt=2π1∫−ππeiwtdt
=2iwπi(eiwπ−e−iwπ)=wπsin(wπ) For n=0
cn=2π1∫−ππf(t)e−πinπtdt=2π1∫−ππeiwte−intdt
=2πi(w−n)1(ei(w−n)π−e−ei(w−n)π)
=(w−n)πsin((w−n)π)
f(t)=eiwt=wπsin(wπ)+−∞∑∞(w−n)πsin((w−n)π)eint
Comments
Leave a comment