We apply the Laplace transform to the function u(x,t) in t, considering x as a parameter
L { u ( x , t ) } = U ( x , s ) L\{ u(x,t) \}=U(x,s) L { u ( x , t )} = U ( x , s )
L { d u ( x , t ) d t } = s U ( x , s ) − u ( x , 0 ) = s U ( x , s ) L\Big\{ \frac {d u(x,t)}{dt} \Big\}=sU(x,s)-u(x,0)=sU(x,s) L { d t d u ( x , t ) } = s U ( x , s ) − u ( x , 0 ) = s U ( x , s )
L { d 2 u ( x , t ) d x 2 } = U x x ( x , s ) L\Big\{ \frac {d^2 u(x,t)}{dx^2} \Big\}=U_{xx}(x,s) L { d x 2 d 2 u ( x , t ) } = U xx ( x , s ) Applying the Laplace transform to the equation, we have
U x x ( x , s ) = s U ( x , s ) U_{xx}(x,s)=sU(x,s) U xx ( x , s ) = s U ( x , s ) This is a second order linear differential equation with a constant coefficient s>0: the solution can be written as
U ( x , s ) = C 1 e x s + C 2 e − x s U(x,s)=C_1 e^{x \sqrt s}+C_2 e^{-x \sqrt s} U ( x , s ) = C 1 e x s + C 2 e − x s To ensure physical feasibility, we assume that
u ( ∞ , t ) = 0 → U ( ∞ , s ) = 0 → C 1 = 0 u(\infin ,t)=0 \space \rightarrow \space U(\infin,s)=0 \space \rightarrow \space C_1=0 u ( ∞ , t ) = 0 → U ( ∞ , s ) = 0 → C 1 = 0 from the boundary condition
u ( 0 , t ) = 1 = L − 1 { U ( 0 , s ) } = L − 1 { C 2 } , t > 0 u(0,t)=1=L^{-1}\{U(0,s) \}=L^{-1}\{C_2 \}, \space t>0 u ( 0 , t ) = 1 = L − 1 { U ( 0 , s )} = L − 1 { C 2 } , t > 0 then
C 2 = 1 s , s > 0 C_2 =\frac 1 s, \space s>0 C 2 = s 1 , s > 0 So, the solution is
U ( x , s ) = 1 s e − x s U(x,s)=\frac 1 s e^{-x \sqrt s} U ( x , s ) = s 1 e − x s apply the inverse Laplace transform
u ( x , t ) = L − 1 { 1 s e − x s } = e r f c ( x 2 t ) u(x,t)=L^{-1} \Big \{\frac 1 s e^{-x \sqrt s} \Big \}=erfc \Big (\frac{x}{2 \sqrt t} \Big) u ( x , t ) = L − 1 { s 1 e − x s } = er f c ( 2 t x ) Answer : u ( x , t ) = e r f c ( x 2 t ) , t ≥ 0 , x ≥ 0 \space u(x,t)=erfc \Big (\frac{x}{2 \sqrt t} \Big), \space t \ge 0, \space x \ge 0 u ( x , t ) = er f c ( 2 t x ) , t ≥ 0 , x ≥ 0
Comments