Question #193282

An inductance of L Henrys and a resistance of 8 ohms are connected in 

series with EMF of 100 Volts. If the current is initially zero and is equal to 18

amperes after 1 second. Find L and find the current after 0.2 s.


1
Expert's answer
2021-05-17T04:23:39-0400


Applying Kirchhoff's loop rule to this circuit gives


EoIRLdIdt=0E_o - IR - L \frac{dI}{dt}=0

The equation can be solved by separating the variables and integrating


RLdt=dIEo/RI\intop \frac{R}{L} dt=\int \frac{dI}{E_o/R -I}

The result is


I(t)=EoR(1eRLt)I(t)=\frac {E_o}{R} \Big (1-e^{- \frac {R}{L}t} \Big)

The final value of the current can be obtained by setting dI/dt equal to zero:


If=EoR=100V8Ω=12.5AI_f = \frac {E_o}{R}=\frac {100V}{8 \Omega}=12.5 A

In this circuit, no current flow of 18A is possible. To obtain a current of 18A, it is necessary either to decrease the resistance value or to increase the EMF.

For example, consider a solution for double EMF. Then


If=EoR=200V8Ω=25AI_f = \frac {E_o}{R}=\frac {200V}{8 \Omega}=25 A

So, after 1 second


18A=200V8Ω(1e8ΩL1s)18A=\frac{200V}{8 \Omega} \Big (1-e^{- \frac {8 \Omega}{L}1s} \Big)

then


L=8Ωln(118A8Ω200V)6.3HL=\frac {-8 \Omega}{ln(1-\frac{18A \cdot 8\Omega}{200V})}\approxeq 6.3H

the current after 0.2s


I(0.2)=200V8Ω(1e8Ω6.3H0.2s)5.6AI(0.2)=\frac {200V}{8\Omega} \Big (1-e^{- \frac {8\Omega}{6.3H}0.2s} \Big)\approxeq 5.6A

Another example, consider a solution for a resistance half the specified value. Then


If=EoR=100V4Ω=25AI_f = \frac {E_o}{R}=\frac {100V}{4 \Omega}=25 A

So, after 1 second


18A=100V4Ω(1e4ΩL1s)18A=\frac{100V}{4 \Omega} \Big (1-e^{- \frac {4 \Omega}{L}1s} \Big)

then


L=4Ωln(118A4Ω100V)3.1HL=\frac {-4 \Omega}{ln(1-\frac{18A \cdot 4\Omega}{100V})}\approxeq 3.1H

the current after 0.2s


I(0.2)=100V4Ω(1e4Ω3.1H0.2s)5.7AI(0.2)=\frac {100V}{4\Omega} \Big (1-e^{- \frac {4\Omega}{3.1H}0.2s} \Big)\approxeq 5.7A

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS