Answer to Question #193282 in Math for Allysa

Question #193282

An inductance of L Henrys and a resistance of 8 ohms are connected in 

series with EMF of 100 Volts. If the current is initially zero and is equal to 18

amperes after 1 second. Find L and find the current after 0.2 s.


1
Expert's answer
2021-05-17T04:23:39-0400


Applying Kirchhoff's loop rule to this circuit gives


"E_o - IR - L \\frac{dI}{dt}=0"

The equation can be solved by separating the variables and integrating


"\\intop \\frac{R}{L} dt=\\int \\frac{dI}{E_o\/R -I}"

The result is


"I(t)=\\frac {E_o}{R} \\Big (1-e^{- \\frac {R}{L}t} \\Big)"

The final value of the current can be obtained by setting dI/dt equal to zero:


"I_f = \\frac {E_o}{R}=\\frac {100V}{8 \\Omega}=12.5 A"

In this circuit, no current flow of 18A is possible. To obtain a current of 18A, it is necessary either to decrease the resistance value or to increase the EMF.

For example, consider a solution for double EMF. Then


"I_f = \\frac {E_o}{R}=\\frac {200V}{8 \\Omega}=25 A"

So, after 1 second


"18A=\\frac{200V}{8 \\Omega} \\Big (1-e^{- \\frac {8 \\Omega}{L}1s} \\Big)"

then


"L=\\frac {-8 \\Omega}{ln(1-\\frac{18A \\cdot 8\\Omega}{200V})}\\approxeq 6.3H"

the current after 0.2s


"I(0.2)=\\frac {200V}{8\\Omega} \\Big (1-e^{- \\frac {8\\Omega}{6.3H}0.2s} \\Big)\\approxeq 5.6A"

Another example, consider a solution for a resistance half the specified value. Then


"I_f = \\frac {E_o}{R}=\\frac {100V}{4 \\Omega}=25 A"

So, after 1 second


"18A=\\frac{100V}{4 \\Omega} \\Big (1-e^{- \\frac {4 \\Omega}{L}1s} \\Big)"

then


"L=\\frac {-4 \\Omega}{ln(1-\\frac{18A \\cdot 4\\Omega}{100V})}\\approxeq 3.1H"

the current after 0.2s


"I(0.2)=\\frac {100V}{4\\Omega} \\Big (1-e^{- \\frac {4\\Omega}{3.1H}0.2s} \\Big)\\approxeq 5.7A"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog