Using the method Laplace of separation of variables, solve du /dt=d²u/dx², u(0,t)=0, u(4,t)=0, u(x,0)=sin3x
the problem is posed incorrectly since the initial conditions and boundary conditions contradict each other:
Suppose
We apply the Laplace transform to the function u(x,t) in t, considering x as a parameter
"L\\Big\\{ \\frac {d u(x,t)}{dt} \\Big\\}=sU(x,s)-u(x,0)=sU(x,s)-sin(3\\pi x)"
"L\\Big\\{ \\frac {d^2 u(x,t)}{dx^2} \\Big\\}=U_{xx}(x,s)"
Applying the Laplace transform to the equation, we have
The general solution can be written as
the general solution of the homogeneous equation
the particular solution of the non-homogeneous equation
"\\frac {d^2 U_p(x,s)}{dx^2}=-(3\\pi)^2 U_p(x,s)"
substitute the particular solution into the equation
"(-(3\\pi)^2-s)(C_3 cos(3\\pi x)+C_4 sin(3\\pi x))=-sin(3\\pi x)"
"(-(3\\pi)^2-s)C_3=0\\space \\rightarrow \\space C_3=0"
"(-(3\\pi)^2-s)C_4=-1\\space \\rightarrow \\space C_4=\\frac{1}{s+9\\pi^2}"
the general solution
from the boundary condition
"u(4,t)=0 \\rightarrow U(4,s)=0=C_1 e^{4 \\sqrt s}+C_2 e^{-4 \\sqrt s}+0"
then
So, the solution is
apply the inverse Laplace transform
"u(x,t)=e^{-9\\pi^2t}sin(3\\pi x), \\space t\\ge0"
Answer:"\\space u(x,t)=e^{-9\\pi^2t}sin(3\\pi x), \\space t\\ge0, \\space 0\\le x\\le 4"
Comments
Leave a comment