the problem is posed incorrectly since the initial conditions and boundary conditions contradict each other:
u ( x , 0 ) = s i n ( 3 x ) a n d u ( 4 , t ) = 0 , b u t s i n ( 3 ⋅ 4 ) ≠ 0 u(x,0)=sin(3x) \space and \space u(4,t)=0, but \space sin(3\cdot4) \not=0 u ( x , 0 ) = s in ( 3 x ) an d u ( 4 , t ) = 0 , b u t s in ( 3 ⋅ 4 ) = 0 Suppose
u ( x , 0 ) = s i n ( 3 π x ) u(x,0)=sin(3\pi x) u ( x , 0 ) = s in ( 3 π x ) We apply the Laplace transform to the function u(x,t) in t, considering x as a parameter
L { u ( x , t ) } = U ( x , s ) L\{ u(x,t) \}=U(x,s) L { u ( x , t )} = U ( x , s )
L { d u ( x , t ) d t } = s U ( x , s ) − u ( x , 0 ) = s U ( x , s ) − s i n ( 3 π x ) L\Big\{ \frac {d u(x,t)}{dt} \Big\}=sU(x,s)-u(x,0)=sU(x,s)-sin(3\pi x) L { d t d u ( x , t ) } = s U ( x , s ) − u ( x , 0 ) = s U ( x , s ) − s in ( 3 π x )
L { d 2 u ( x , t ) d x 2 } = U x x ( x , s ) L\Big\{ \frac {d^2 u(x,t)}{dx^2} \Big\}=U_{xx}(x,s) L { d x 2 d 2 u ( x , t ) } = U xx ( x , s ) Applying the Laplace transform to the equation, we have
U x x ( x , s ) = s U ( x , s ) − s i n ( 3 π x ) U_{xx}(x,s)=sU(x,s)-sin(3\pi x) U xx ( x , s ) = s U ( x , s ) − s in ( 3 π x ) The general solution can be written as
U ( x , s ) = U h ( x , s ) + U p ( x , s ) U(x,s)=U_h(x,s)+U_p(x,s) U ( x , s ) = U h ( x , s ) + U p ( x , s ) the general solution of the homogeneous equation
U h ( x , s ) = C 1 e x s + C 2 e − x s U_h(x,s)=C_1 e^{x \sqrt s}+C_2 e^{-x \sqrt s} U h ( x , s ) = C 1 e x s + C 2 e − x s the particular solution of the non-homogeneous equation
U p ( x , s ) = C 3 c o s ( 3 π x ) + C 4 s i n ( 3 π x ) U_p(x,s)=C_3 cos(3\pi x)+C_4 sin(3\pi x) U p ( x , s ) = C 3 cos ( 3 π x ) + C 4 s in ( 3 π x )
d 2 U p ( x , s ) d x 2 = − ( 3 π ) 2 U p ( x , s ) \frac {d^2 U_p(x,s)}{dx^2}=-(3\pi)^2 U_p(x,s) d x 2 d 2 U p ( x , s ) = − ( 3 π ) 2 U p ( x , s ) substitute the particular solution into the equation
− ( 3 π ) 2 U p ( x , s ) = s U p ( x , s ) − s i n ( 3 π x ) -(3\pi)^2 U_p(x,s)=sU_p(x,s)-sin(3\pi x) − ( 3 π ) 2 U p ( x , s ) = s U p ( x , s ) − s in ( 3 π x )
( − ( 3 π ) 2 − s ) ( C 3 c o s ( 3 π x ) + C 4 s i n ( 3 π x ) ) = − s i n ( 3 π x ) (-(3\pi)^2-s)(C_3 cos(3\pi x)+C_4 sin(3\pi x))=-sin(3\pi x) ( − ( 3 π ) 2 − s ) ( C 3 cos ( 3 π x ) + C 4 s in ( 3 π x )) = − s in ( 3 π x )
( − ( 3 π ) 2 − s ) C 3 = 0 → C 3 = 0 (-(3\pi)^2-s)C_3=0\space \rightarrow \space C_3=0 ( − ( 3 π ) 2 − s ) C 3 = 0 → C 3 = 0
( − ( 3 π ) 2 − s ) C 4 = − 1 → C 4 = 1 s + 9 π 2 (-(3\pi)^2-s)C_4=-1\space \rightarrow \space C_4=\frac{1}{s+9\pi^2} ( − ( 3 π ) 2 − s ) C 4 = − 1 → C 4 = s + 9 π 2 1 the general solution
U ( x , s ) = C 1 e x s + C 2 e − x s + s i n ( 3 π x ) s + 9 π 2 U(x,s)=C_1 e^{x \sqrt s}+C_2 e^{-x \sqrt s}+\frac{sin(3\pi x)}{s+9\pi^2} U ( x , s ) = C 1 e x s + C 2 e − x s + s + 9 π 2 s in ( 3 π x ) from the boundary condition
u ( 0 , t ) = 0 → U ( 0 , s ) = 0 = C 1 + C 2 + 0 u(0,t)=0 \rightarrow U(0,s)=0=C_1 +C_2+0 u ( 0 , t ) = 0 → U ( 0 , s ) = 0 = C 1 + C 2 + 0
u ( 4 , t ) = 0 → U ( 4 , s ) = 0 = C 1 e 4 s + C 2 e − 4 s + 0 u(4,t)=0 \rightarrow U(4,s)=0=C_1 e^{4 \sqrt s}+C_2 e^{-4 \sqrt s}+0 u ( 4 , t ) = 0 → U ( 4 , s ) = 0 = C 1 e 4 s + C 2 e − 4 s + 0 then
C 1 = C 2 = 0 C_1 =C_2 =0 C 1 = C 2 = 0 So, the solution is
U ( x , s ) = s i n ( 3 π x ) s + 9 π 2 U(x,s)=\frac{sin(3\pi x)}{s+9\pi^2} U ( x , s ) = s + 9 π 2 s in ( 3 π x ) apply the inverse Laplace transform
u ( x , t ) = L − 1 { s i n ( 3 π x ) s + 9 π 2 } = s i n ( 3 π x ) L − 1 { 1 s + 9 π 2 } u(x,t)=L^{-1} \Big\{ \frac{sin(3\pi x)}{s+9\pi^2} \Big\}=sin(3\pi x)L^{-1} \Big\{ \frac{1}{s+9\pi^2} \Big\} u ( x , t ) = L − 1 { s + 9 π 2 s in ( 3 π x ) } = s in ( 3 π x ) L − 1 { s + 9 π 2 1 }
u ( x , t ) = e − 9 π 2 t s i n ( 3 π x ) , t ≥ 0 u(x,t)=e^{-9\pi^2t}sin(3\pi x), \space t\ge0 u ( x , t ) = e − 9 π 2 t s in ( 3 π x ) , t ≥ 0 Answer : u ( x , t ) = e − 9 π 2 t s i n ( 3 π x ) , t ≥ 0 , 0 ≤ x ≤ 4 \space u(x,t)=e^{-9\pi^2t}sin(3\pi x), \space t\ge0, \space 0\le x\le 4 u ( x , t ) = e − 9 π 2 t s in ( 3 π x ) , t ≥ 0 , 0 ≤ x ≤ 4
Comments