Solve the following
π) Maximize π(π₯, π¦) = 2π₯ + 5π¦; subject to the constraints.
2π¦ β π₯ β€ 8; π₯ β π¦ β€ 4; π₯ β₯ 0; π¦ β₯ 0.
π) Minimize π§ = 3π₯ + π¦; subject to the constraints.
3π₯ + 5π¦ β₯ 15; π₯ + 6π¦ β₯ 9; π₯ β₯ 0; π¦ β₯ 0.
a)
"f(x, y)=2x+5y"
"OA: x=0, 0\\leq y\\leq4"
"f(0, 0)=0, f(0, 4)=20"
"AB: 2y-x=8=>x=2y-8, 4\\leq y\\leq12"
"f(2y-8, y)=2(2y-8)+5y=9y-16""f(0, 4)=20, f(16, 12)=92"
"BC: x-y=4=>x=y+4, 0\\leq y\\leq12"
"f(y+4, y)=2(y+4)+5y=7y+8""f(16, 12)=92, f(4, 0)=8"
"CO: y=0, 0\\leq x\\leq4"
"f(x, 0)=2x""f(0, 0)=0, f(4,0)=8"
The function "f(x, y)" has maximum with value of "92" at "x=16, y=12"
subject to the constraints.
b)
"z=3x+y"
"x=\\dfrac{45}{13}, y=\\dfrac{12}{13}"
"x=0, y\\geq3"
"z(0, 3)=3"
"AB: 3x+5y=15=>x=5-\\dfrac{5}{3}y, \\dfrac{12}{13}\\leq y\\leq3"
"z=15-5y+y=15-4y""z(0, 3)=3, z(\\dfrac{45}{13}, \\dfrac{12}{13})=\\dfrac{147}{13}"
"BC: x+6y=9=>x=9-6y, 0\\leq y\\leq\\dfrac{12}{13}"
"z=27-18y+y=27-17y""z(\\dfrac{45}{13}, \\dfrac{12}{13})=\\dfrac{147}{13}, z(9, 0)=27"
"y=0, x\\geq9"
The function "z" has minimum with value of "3" at "x=0, y=3"
subject to the constraints.
Comments
Leave a comment