Question #186095

Solve the following

𝑎) Maximize 𝑓(𝑥, 𝑦) = 2𝑥 + 5𝑦; subject to the constraints.

2𝑦 − 𝑥 ≤ 8; 𝑥 − 𝑦 ≤ 4; 𝑥 ≥ 0; 𝑦 ≥ 0.

𝑏) Minimize 𝑧 = 3𝑥 + 𝑦; subject to the constraints.

3𝑥 + 5𝑦 ≥ 15; 𝑥 + 6𝑦 ≥ 9; 𝑥 ≥ 0; 𝑦 ≥ 0.


1
Expert's answer
2021-05-07T09:32:34-0400

a)

f(x,y)=2x+5yf(x, y)=2x+5y

OA:x=0,0y4OA: x=0, 0\leq y\leq4


f(0,y)=5yf(0, y)=5y

f(0,0)=0,f(0,4)=20f(0, 0)=0, f(0, 4)=20


AB:2yx=8=>x=2y8,4y12AB: 2y-x=8=>x=2y-8, 4\leq y\leq12

f(2y8,y)=2(2y8)+5y=9y16f(2y-8, y)=2(2y-8)+5y=9y-16

f(0,4)=20,f(16,12)=92f(0, 4)=20, f(16, 12)=92



BC:xy=4=>x=y+4,0y12BC: x-y=4=>x=y+4, 0\leq y\leq12

f(y+4,y)=2(y+4)+5y=7y+8f(y+4, y)=2(y+4)+5y=7y+8

f(16,12)=92,f(4,0)=8f(16, 12)=92, f(4, 0)=8



CO:y=0,0x4CO: y=0, 0\leq x\leq4

f(x,0)=2xf(x, 0)=2x

f(0,0)=0,f(4,0)=8f(0, 0)=0, f(4,0)=8



The function f(x,y)f(x, y) has maximum with value of 9292 at x=16,y=12x=16, y=12

subject to the constraints.


b)




z=3x+yz=3x+y


3x+5y=15x+6y=9\begin{matrix} 3x+5y=15 \\ x+6y=9 \end{matrix}

x=4513,y=1213x=\dfrac{45}{13}, y=\dfrac{12}{13}


x=0,y3x=0, y\geq3


z=y3z=y\geq3

z(0,3)=3z(0, 3)=3

AB:3x+5y=15=>x=553y,1213y3AB: 3x+5y=15=>x=5-\dfrac{5}{3}y, \dfrac{12}{13}\leq y\leq3

z=155y+y=154yz=15-5y+y=15-4y

z(0,3)=3,z(4513,1213)=14713z(0, 3)=3, z(\dfrac{45}{13}, \dfrac{12}{13})=\dfrac{147}{13}



BC:x+6y=9=>x=96y,0y1213BC: x+6y=9=>x=9-6y, 0\leq y\leq\dfrac{12}{13}

z=2718y+y=2717yz=27-18y+y=27-17y

z(4513,1213)=14713,z(9,0)=27z(\dfrac{45}{13}, \dfrac{12}{13})=\dfrac{147}{13}, z(9, 0)=27



y=0,x9y=0, x\geq9


z=3x27z=3x\geq27

The function zz has minimum with value of 33 at x=0,y=3x=0, y=3

subject to the constraints.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS