Question #185087

rOA and rOB are the position vectors of the two particles Aand B at time t.If both particles start moving when t=0,determine whethert the particles collide and,if they do,give the value of t when this occurs and the position vector of the point of collision.If they do not ,find the time and their distance apart when they are closest together .

(a) rOA =3i-7j+(3i+2j)t, rOB=8i-6j+(2i+j)t.

(b) rOA=-5i+2j+9k+(5i-j+2k)t, rOB=i+2j+3k+(3i-j+4k)t.


1
Expert's answer
2021-05-07T09:31:31-0400

(a)

rA=rB\vec r_A=\vec r_B

3i7j+(3i+2j)t=8i6j+(2i+j)t3\vec i-7\vec j+(3\vec i+2\vec j)t=8\vec i-6\vec j+(2\vec i+\vec j)t

3+3t=8+2t7+2t=6+t\begin{matrix} 3+3t=8+2t \\ -7+2t=-6+t \\ \end{matrix}

t=5t=1\begin{matrix} t=5 \\ t=1 \\ \end{matrix}

No solution. The particles will never collide.


distance2=d2distance^2=d^2

=(8+2t33t)2+(6+t+72t)2=(8+2t-3-3t)^2+(-6+t+7-2t)^2

=(5t)2+(1t)2=2t212t+26=(5-t)^2+(1-t)^2=2t^2-12t+26

tvertex=122(2)=3t_{vertex}=\dfrac{12}{2(2)}=3

dmin=2(3)212(3)+26=22d_{min}=\sqrt{2(3)^2-12(3)+26}=2\sqrt{2}

rA(3)=12ij\vec r_A(3)=12\vec i-\vec j

rB(3)=14i3j\vec r_B(3)=14\vec i-3\vec j


(b)

rA=rB\vec r_A=\vec r_B

5i+2j+9k+(5ij+2k)t-5\vec i+2\vec j+9\vec k+(5\vec i-\vec j+2\vec k)t

=i+2j+3k+(3ij+4k)t=\vec i+2\vec j+3\vec k+(3\vec i-\vec j+4\vec k)t

5+5t=1+3t2t=2t9+2t=3+4t\begin{matrix} -5+5t=1+3t \\ 2-t=2-t \\ 9+2t=3+4t \\ \end{matrix}

The solution t=3t=3

The particles will collide at time t=3t=3 after the start, and


rA=rB=10ij+15k\vec r_A=\vec r_B=10\vec i-\vec j+15\vec k



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS