f ( x ) = { − x 2 when x ≤ 0 4 − 5 x when 0 < x ≤ 1 3 x − 4 x 2 when 1 < x ≤ 2 − 12 x + 2 x when x > 2 f(x) = \begin{cases}
-x^2 &\text{when } x\leq0 \\
4-5x &\text{when } 0<x\leq1\\
3x-4x^2 &\text{when } 1<x\leq2\\
-12x+2x &\text{when } x>2\\
\end{cases} f ( x ) = ⎩ ⎨ ⎧ − x 2 4 − 5 x 3 x − 4 x 2 − 12 x + 2 x when x ≤ 0 when 0 < x ≤ 1 when 1 < x ≤ 2 when x > 2
lim x → 0 − f ( x ) = lim x → 0 − ( − x 2 ) = 0 \lim\limits_{x\to0^-}f(x)=\lim\limits_{x\to0^-}(-x^2)=0 x → 0 − lim f ( x ) = x → 0 − lim ( − x 2 ) = 0
lim x → 0 + f ( x ) = lim x → 0 + ( 4 − 5 x ) = 4 \lim\limits_{x\to0^+}f(x)=\lim\limits_{x\to0^+}(4-5x)=4 x → 0 + lim f ( x ) = x → 0 + lim ( 4 − 5 x ) = 4
lim x → 0 − f ( x ) = 0 ≠ 4 = lim x → 0 + f ( x ) \lim\limits_{x\to0^-}f(x)=0\not=4=\lim\limits_{x\to0^+}f(x) x → 0 − lim f ( x ) = 0 = 4 = x → 0 + lim f ( x ) lim x → 0 f ( x ) \lim\limits_{x\to0}f(x) x → 0 lim f ( x ) does not exist.
The function f ( x ) f(x) f ( x ) is discontinuous at x = 0 x=0 x = 0 and has a jump discontinuity at x = 0. x=0. x = 0.
lim x → 1 − f ( x ) = lim x → 1 − ( 4 − 5 x ) = − 1 \lim\limits_{x\to1^-}f(x)=\lim\limits_{x\to1^-}(4-5x)=-1 x → 1 − lim f ( x ) = x → 1 − lim ( 4 − 5 x ) = − 1
lim x → 1 + f ( x ) = lim x → 1 + ( 3 x − 4 x 2 ) = − 1 \lim\limits_{x\to1^+}f(x)=\lim\limits_{x\to1^+}(3x-4x^2)=-1 x → 1 + lim f ( x ) = x → 1 + lim ( 3 x − 4 x 2 ) = − 1
lim x → 1 − f ( x ) = − 1 = lim x → 1 + f ( x ) \lim\limits_{x\to1^-}f(x)=-1=\lim\limits_{x\to1^+}f(x) x → 1 − lim f ( x ) = − 1 = x → 1 + lim f ( x ) lim x → 1 f ( x ) = − 1 \lim\limits_{x\to1}f(x)=-1 x → 1 lim f ( x ) = − 1 .
f ( 1 ) = 4 − 5 ( 1 ) = − 1 f(1)=4-5(1)=-1 f ( 1 ) = 4 − 5 ( 1 ) = − 1 The function f ( x ) f(x) f ( x ) is continuous at x = 1. x=1. x = 1.
lim x → 2 − f ( x ) = lim x → 2 − ( 3 x − 4 x 2 ) = − 10 \lim\limits_{x\to2^-}f(x)=\lim\limits_{x\to2^-}(3x-4x^2)=-10 x → 2 − lim f ( x ) = x → 2 − lim ( 3 x − 4 x 2 ) = − 10
lim x → 2 + f ( x ) = lim x → 2 + ( − 12 x + 2 x ) = − 20 \lim\limits_{x\to2^+}f(x)=\lim\limits_{x\to2^+}(-12x+2x)=-20 x → 2 + lim f ( x ) = x → 2 + lim ( − 12 x + 2 x ) = − 20
lim x → 2 − f ( x ) = − 10 ≠ − 20 = lim x → 2 + f ( x ) \lim\limits_{x\to2^-}f(x)=-10\not=-20=\lim\limits_{x\to2^+}f(x) x → 2 − lim f ( x ) = − 10 = − 20 = x → 2 + lim f ( x ) lim x → 2 f ( x ) \lim\limits_{x\to2}f(x) x → 2 lim f ( x ) does not exist.
The function f ( x ) f(x) f ( x ) is discontinuous at x = 2 x=2 x = 2 and has a jump discontinuity at x = 2. x=2. x = 2.
f ( 1 ) = − 1 f(1)=-1 f ( 1 ) = − 1
lim h → 0 − f ( 1 + h ) − f ( 1 ) h = lim h → 0 − 4 − 5 ( 1 + h ) − ( − 1 ) h \lim\limits_{h\to0^-}\dfrac{f(1+h)-f(1)}{h}=\lim\limits_{h\to0^-}\dfrac{4-5(1+h)-(-1)}{h} h → 0 − lim h f ( 1 + h ) − f ( 1 ) = h → 0 − lim h 4 − 5 ( 1 + h ) − ( − 1 )
= lim h → 0 − − 5 h h = − 5 =\lim\limits_{h\to0^-}\dfrac{-5h}{h}=-5 = h → 0 − lim h − 5 h = − 5
lim h → 0 + f ( 1 + h ) − f ( 1 ) h \lim\limits_{h\to0^+}\dfrac{f(1+h)-f(1)}{h} h → 0 + lim h f ( 1 + h ) − f ( 1 )
= lim h → 0 + 3 ( 1 + h ) − 4 ( 1 + h ) 2 − ( − 1 ) h =\lim\limits_{h\to0^+}\dfrac{3(1+h)-4(1+h)^2-(-1)}{h} = h → 0 + lim h 3 ( 1 + h ) − 4 ( 1 + h ) 2 − ( − 1 )
= lim h → 0 + 3 + 3 h − 4 − 8 h − 4 h 2 + 1 h =\lim\limits_{h\to0^+}\dfrac{3+3h-4-8h-4h^2+1}{h} = h → 0 + lim h 3 + 3 h − 4 − 8 h − 4 h 2 + 1
= lim h → 0 + ( − 5 − 4 h ) = − 5 =\lim\limits_{h\to0^+}(-5-4h)=-5 = h → 0 + lim ( − 5 − 4 h ) = − 5
lim h → 0 − f ( 1 + h ) − f ( 1 ) h = − 5 \lim\limits_{h\to0^-}\dfrac{f(1+h)-f(1)}{h}=-5 h → 0 − lim h f ( 1 + h ) − f ( 1 ) = − 5
= lim h → 0 + f ( 1 + h ) − f ( 1 ) h =\lim\limits_{h\to0^+}\dfrac{f(1+h)-f(1)}{h} = h → 0 + lim h f ( 1 + h ) − f ( 1 ) Then
lim h → 0 f ( 1 + h ) − f ( 1 ) h = − 5 \lim\limits_{h\to0}\dfrac{f(1+h)-f(1)}{h}=-5 h → 0 lim h f ( 1 + h ) − f ( 1 ) = − 5
The function f ( x ) f(x) f ( x ) is derivable at x = 1 , x=1, x = 1 , and
f ′ ( 1 ) = − 5 f'(1)=-5 f ′ ( 1 ) = − 5
Comments