a)
∫0πxsin(2x)dx
∫xsin(2x)dx
∫udv=uv−∫vdu
u=x,du=dx
dv=sin(2x)dx,v=∫sin(2x)dx=−21cos(2x)
∫xsin(2x)dx=−21xcos(2x)+21∫cos(2x)dx
=−21xcos(2x)+41sin(2x)+C
∫0πxsin(2x)dx=[−21xcos(2x)+41sin(2x)]π0
=−21π+0−(−0+0)=−2π
b)
∫x+1x2dx=∫x+1x2+x−x−1+1dx
=∫xdx−∫dx+∫x+11dx
=2x2−x+ln∣x+1∣+C
c)
∫x2−3x+2x+1dx=∫(x−1)(x−2)x+1dx
(x−1)(x−2)x+1=x−1A+x−2B
=(x+1)(x−2)A(x−2)+B(x−1) x=1:A=−2
x=2:B=3
∫x2−3x+2x+1dx=−2∫x−11dx+3∫x−21dx
=−2ln∣x−1∣+3ln∣x−2∣+C
Comments
Leave a comment