"A=\\begin{pmatrix}\n 1 & -1 & 1 \\\\\n 0 & 2 & -1 \\\\ \n 2 & 3 & 0 \\\\\n\\end{pmatrix}, X=\\begin{pmatrix}\n x \\\\ \n y\\\\\nz\n\\end{pmatrix}, B=\\begin{pmatrix}\n 1\\\\ \n1\\\\\n1\n\\end{pmatrix}"
"AX=B"
"A^{-1}AX=A^{-1}B=>X=A^{-1}B" augment the matrix with the identity matrix:
"\\begin{pmatrix}\n 1 & -1 & 1 & & 1& 0 & 0 \\\\\n 0 & 2 & -1 & & 0& 1 & 0 \\\\ \n 2 & 3 & 0 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}" "R_3=R_3-2R_1"
"\\begin{pmatrix}\n 1 & -1 & 1 & & 1& 0 & 0 \\\\\n 0 & 2 & -1 & & 0& 1 & 0 \\\\ \n 0 & 5 & -2 & & -2 & 0 & 1 \\\\\n\\end{pmatrix}" "R_2=R_2\/2"
"\\begin{pmatrix}\n 1 & -1 & 1 & & 1& 0 & 0 \\\\\n 0 & 1 & -1\/2 & & 0& 1\/2 & 0 \\\\ \n 0 & 5 & -2 & & -2 & 0 & 1 \\\\\n\\end{pmatrix}" "R_1=R_1+R_2"
"\\begin{pmatrix}\n 1 & 0 & 1\/2 & & 1& 1\/2 & 0 \\\\\n 0 & 1 & -1\/2 & & 0& 1\/2 & 0 \\\\ \n 0 & 5 & -2 & & -2 & 0 & 1 \\\\\n\\end{pmatrix}" "R_3=R_3-5R_2"
"\\begin{pmatrix}\n 1 & 0 & 1\/2 & & 1& 1\/2 & 0 \\\\\n 0 & 1 & -1\/2 & & 0& 1\/2 & 0 \\\\ \n 0 & 0 & 1\/2 & & -2 & -5\/2 & 1 \\\\\n\\end{pmatrix}" "R_3=2R_3"
"\\begin{pmatrix}\n 1 & 0 & 1\/2 & & 1& 1\/2 & 0 \\\\\n 0 & 1 & -1\/2 & & 0& 1\/2 & 0 \\\\ \n 0 & 0 & 1 & & -4 & -5 & 2 \\\\\n\\end{pmatrix}" "R_1=R_1-R_3\/2"
"\\begin{pmatrix}\n 1 & 0 & 0 & & 3 & 3 & -1 \\\\\n 0 & 1 & -1\/2 & & 0& 1\/2 & 0 \\\\ \n 0 & 0 & 1 & & -4 & -5 & 2 \\\\\n\\end{pmatrix}" "R_2=R_2+R_3\/2"
"\\begin{pmatrix}\n 1 & 0 & 0 & & 3 & 3 & -1 \\\\\n 0 & 1 & 0 & & -2 & -2 & 1 \\\\ \n 0 & 0 & 1 & & -4 & -5 & 2 \\\\\n\\end{pmatrix}"We are done. On the left is the identity matrix. On the right is the inverse matrix.
"A^{-1}=\\begin{pmatrix}\n 3 & 3 & -1 \\\\\n -2 & -2 & 1 \\\\ \n -4 & -5 & 2 \\\\\n\\end{pmatrix}"
"X=A^{-1}B"
"=\\begin{pmatrix}\n 3 & 3 & -1 \\\\\n -2 & -2 & 1 \\\\ \n -4 & -5 & 2 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n 1\\\\ \n1\\\\\n1\n\\end{pmatrix}"
"=\\begin{pmatrix}\n 3+3-1\\\\ \n-2-2+1\\\\\n-4-5+2\n\\end{pmatrix}=\\begin{pmatrix}\n 5\\\\ \n-3\\\\\n-7\n\\end{pmatrix}"
"(5, -3, -7)"
Comments
Leave a comment