Question #350279

Determine the inverse of A, and show that A


−1A = I.


A =


(2 1 0


2 −1 1


3 −2 4)





1
Expert's answer
2022-06-13T17:50:25-0400
A=(210211324)A=\begin{pmatrix} 2 & 1 & 0\\ 2 & -1 & 1\\ 3 & -2 & 4\\ \end{pmatrix}

Augment the matrix with the identity matrix:


(210100211010324001)\begin{pmatrix} 2 & 1 & 0 & & 1 & 0 & 0\\ 2 & -1 & 1 & & 0 & 1 & 0\\ 3 & -2 & 4 & & 0 & 0 & 1\\ \end{pmatrix}

R1=R1/2R_1=R_1/2


(11/201/200211010324001)\begin{pmatrix} 1 & 1/2 & 0 & & 1/2 & 0 & 0\\ 2 & -1 & 1 & & 0 & 1 & 0\\ 3 & -2 & 4 & & 0 & 0 & 1\\ \end{pmatrix}

R2=R22R1R_2=R_2-2R_1


(11/201/200021110324001)\begin{pmatrix} 1 & 1/2 & 0 & & 1/2 & 0 & 0\\ 0 & -2 & 1 & & -1 & 1 & 0\\ 3 & -2 & 4 & & 0 & 0 & 1\\ \end{pmatrix}

R3=R33R1R_3=R_3-3R_1


(11/201/20002111007/243/201)\begin{pmatrix} 1 & 1/2 & 0 & & 1/2 & 0 & 0\\ 0 & -2 & 1 & & -1 & 1 & 0\\ 0 & -7/2 & 4 & & -3/2 & 0 & 1\\ \end{pmatrix}

R2=R2/2R_2=-R_2/2


(11/201/200011/21/21/2007/243/201)\begin{pmatrix} 1 & 1/2 & 0 & & 1/2 & 0 & 0\\ 0 & 1 & -1/2 & & 1/2 & -1/2 & 0\\ 0 & -7/2 & 4 & & -3/2 & 0 & 1\\ \end{pmatrix}

R1=R1R2/2R_1=R_1-R_2/2


(101/41/41/40011/21/21/2007/243/201)\begin{pmatrix} 1 & 0 & 1/4 & & 1/4 & 1/4 & 0\\ 0 & 1 & -1/2 & & 1/2 & -1/2 & 0\\ 0 & -7/2 & 4 & & -3/2 & 0 & 1\\ \end{pmatrix}

R3=R3+7R2/2R_3=R_3+7R_2/2


(101/41/41/40011/21/21/20009/41/47/41)\begin{pmatrix} 1 & 0 & 1/4 & & 1/4 & 1/4 & 0\\ 0 & 1 & -1/2 & & 1/2 & -1/2 & 0\\ 0 & 0 & 9/4 & & 1/4 & -7/4 & 1\\ \end{pmatrix}

R3=4R3/9R_3=4R_3/9


(101/41/41/40011/21/21/200011/97/94/9)\begin{pmatrix} 1 & 0 & 1/4 & & 1/4 & 1/4 & 0\\ 0 & 1 & -1/2 & & 1/2 & -1/2 & 0\\ 0 & 0 & 1 & & 1/9 & -7/9 & 4/9\\ \end{pmatrix}

R1=R1R3/4R_1=R_1-R_3/4


(1002/94/91/9011/21/21/200011/97/94/9)\begin{pmatrix} 1 & 0 & 0 & & 2/9 & 4/9 & -1/9\\ 0 & 1 & -1/2 & & 1/2 & -1/2 & 0\\ 0 & 0 & 1 & & 1/9 & -7/9 & 4/9\\ \end{pmatrix}

R2=R2+R3/2R_2=R_2+R_3/2


(1002/94/91/90105/98/92/90011/97/94/9)\begin{pmatrix} 1 & 0 & 0 & & 2/9 & 4/9 & -1/9\\ 0 & 1 & 0 & & 5/9 & -8/9 & 2/9\\ 0 & 0 & 1 & & 1/9 & -7/9 & 4/9\\ \end{pmatrix}

We are done. On the left is the identity matrix. On the right is the inverse matrix.


A1=(2/94/91/95/98/92/91/97/94/9)A^{-1}=\begin{pmatrix} 2/9 & 4/9 & -1/9\\ 5/9 & -8/9 & 2/9\\ 1/9 & -7/9 & 4/9\\ \end{pmatrix}

Check


A1A=(2/94/91/95/98/92/91/97/94/9)(210211324)A^{-1}A=\begin{pmatrix} 2/9 & 4/9 & -1/9\\ 5/9 & -8/9 & 2/9\\ 1/9 & -7/9 & 4/9\\ \end{pmatrix}\begin{pmatrix} 2 & 1 & 0\\ 2 & -1 & 1\\ 3 & -2 & 4\\ \end{pmatrix}

=(4+83924+290+4491016+695+84908+89214+1291+78907+169)=\begin{pmatrix} \dfrac{4+8-3}{9} & \dfrac{2-4+2}{9} & \dfrac{0+4-4}{9}\\ \\ \dfrac{10-16+6}{9} & \dfrac{5+8-4}{9} & \dfrac{0-8+8}{9}\\ \\ \dfrac{2-14+12}{9} & \dfrac{1+7-8}{9} & \dfrac{0-7+16}{9}\\ \\ \end{pmatrix}

=(100010001)=I=\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}=I


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS