Answer to Question #350512 in Linear Algebra for Busi

Question #350512

Use the matrix method (together with elementary row transformations) to solve the following:


2x −y +3z = 2


x +2y −z = 4


−4x +5y +z = 10


1
Expert's answer
2022-06-15T14:56:35-0400
A=(213121451),X=(xyz),B=(2410)A=\begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1\\ -4 & 5 & 1 \\ \end{pmatrix}, X=\begin{pmatrix} x \\ y \\ z \end{pmatrix}, B=\begin{pmatrix} 2\\ 4\\ 10 \end{pmatrix}

AX=BAX=B

A1AX=A1BA^{-1}AX=A^{-1}B

X=A1BX=A^{-1}B

Augment the matrix with the identity matrix:


(213100121010451001)\begin{pmatrix} 2 & -1 & 3 && 1& 0 & 0 \\ 1 & 2 & -1 && 0 & 1 & 0\\ -4 & 5 & 1 && 0 & 0 & 1 \\ \end{pmatrix}

R1=R1/2R_1=R_1/2


(11/23/21/200121010451001)\begin{pmatrix} 1 & -1/2 & 3/2 && 1/2& 0 & 0 \\ 1 & 2 & -1 && 0 & 1 & 0\\ -4 & 5 & 1 && 0 & 0 & 1 \\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(11/23/21/20005/25/21/210451001)\begin{pmatrix} 1 & -1/2 & 3/2 && 1/2& 0 & 0 \\ 0 & 5/2 & -5/2 && -1/2 & 1 & 0\\ -4 & 5 & 1 && 0 & 0 & 1 \\ \end{pmatrix}

R3=R3+4R1R_3=R_3+4R_1


(11/23/21/20005/25/21/210037201)\begin{pmatrix} 1 & -1/2 & 3/2 && 1/2& 0 & 0 \\ 0 & 5/2 & -5/2 && -1/2 & 1 & 0\\ 0 & 3 & 7 && 2 & 0 & 1 \\ \end{pmatrix}

R2=2R2/5R_2=2R_2/5


(11/23/21/2000111/52/50037201)\begin{pmatrix} 1 & -1/2 & 3/2 && 1/2& 0 & 0 \\ 0 & 1 & -1 && -1/5 & 2/5 & 0\\ 0 & 3 & 7 && 2 & 0 & 1 \\ \end{pmatrix}

R1=R1+R2/2R_1=R_1+R_2/2


(1012/51/500111/52/50037201)\begin{pmatrix} 1 & 0 & 1 && 2/5 & 1/5 & 0 \\ 0 & 1 & -1 && -1/5 & 2/5 & 0\\ 0 & 3 & 7 && 2 & 0 & 1 \\ \end{pmatrix}

R3=R33R2R_3=R_3-3R_2


(1012/51/500111/52/50001013/56/51)\begin{pmatrix} 1 & 0 & 1 && 2/5 & 1/5 & 0 \\ 0 & 1 & -1 && -1/5 & 2/5 & 0\\ 0 & 0 & 10 && 13/5 & -6/5 & 1 \\ \end{pmatrix}

R3=R3/10R_3=R_3/10


(1012/51/500111/52/5000113/506/501/10)\begin{pmatrix} 1 & 0 & 1 && 2/5 & 1/5 & 0 \\ 0 & 1 & -1 && -1/5 & 2/5 & 0\\ 0 & 0 & 1 && 13/50 & -6/50 & 1/10 \\ \end{pmatrix}

R1=R1R3R_1=R_1-R_3


(1007/508/251/100111/52/5000113/506/501/10)\begin{pmatrix} 1 & 0 & 0 && 7/50 & 8/25 & -1/10 \\ 0 & 1 & -1 && -1/5 & 2/5 & 0\\ 0 & 0 & 1 && 13/50 & -6/50 & 1/10 \\ \end{pmatrix}

R2=R2+R3R_2=R_2+R_3


(1007/508/251/100103/507/251/1000113/506/501/10)\begin{pmatrix} 1 & 0 & 0 && 7/50 & 8/25 & -1/10 \\ 0 & 1 & 0 && 3/50 & 7/25 & 1/10\\ 0 & 0 & 1 && 13/50 & -6/50 & 1/10 \\ \end{pmatrix}

We are done. On the left is the identity matrix. On the right is the inverse matrix.

A1B=(0.140.320.10.060.280.10.260.120.1)(2410)A^{-1}B=\begin{pmatrix} 0.14 & 0.32 & -0.1 \\ 0.06 & 0.28 & 0.1 \\ 0.26 & -0.12 & 0.1 \\ \end{pmatrix}\begin{pmatrix} 2\\ 4\\ 10 \end{pmatrix}

=(0.28+1.2810.12+1.12+10.520.48+1)=(0.562.241.04)=\begin{pmatrix} 0.28+1.28-1\\ 0.12+1.12+1\\ 0.52-0.48+1 \end{pmatrix}=\begin{pmatrix} 0.56\\ 2.24\\ 1.04 \end{pmatrix}

(x,y,z)=(0.56,2.24,1.04)(x,y,z)=(0.56, 2.24, 1.04)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment