A=⎝⎛21−4−1253−11⎠⎞,X=⎝⎛xyz⎠⎞,B=⎝⎛2410⎠⎞
AX=B
A−1AX=A−1B
X=A−1B Augment the matrix with the identity matrix:
⎝⎛21−4−1253−11100010001⎠⎞ R1=R1/2
⎝⎛11−4−1/2253/2−111/200010001⎠⎞ R2=R2−R1
⎝⎛10−4−1/25/253/2−5/211/2−1/20010001⎠⎞ R3=R3+4R1
⎝⎛100−1/25/233/2−5/271/2−1/22010001⎠⎞ R2=2R2/5
⎝⎛100−1/2133/2−171/2−1/5202/50001⎠⎞ R1=R1+R2/2
⎝⎛1000131−172/5−1/521/52/50001⎠⎞ R3=R3−3R2
⎝⎛1000101−1102/5−1/513/51/52/5−6/5001⎠⎞ R3=R3/10
⎝⎛1000101−112/5−1/513/501/52/5−6/50001/10⎠⎞ R1=R1−R3
⎝⎛1000100−117/50−1/513/508/252/5−6/50−1/1001/10⎠⎞ R2=R2+R3
⎝⎛1000100017/503/5013/508/257/25−6/50−1/101/101/10⎠⎞We are done. On the left is the identity matrix. On the right is the inverse matrix.
A−1B=⎝⎛0.140.060.260.320.28−0.12−0.10.10.1⎠⎞⎝⎛2410⎠⎞
=⎝⎛0.28+1.28−10.12+1.12+10.52−0.48+1⎠⎞=⎝⎛0.562.241.04⎠⎞
(x,y,z)=(0.56,2.24,1.04)
Comments
Leave a comment