Prove that if U and V are subspaces of Rn
so is U+V
"U+V=\\left\\{ u+v,u\\in U,v\\in V \\right\\} \\\\We\\,\\,need\\,\\,to\\,\\,check\\,\\,that\\,\\,\\forall \\alpha ,\\beta \\in \\mathbb{R} \\,\\,\\forall x,y\\in U+V\\\\\\alpha x+\\beta y\\in U+V\\\\We\\,\\,have\\\\x=u_1+v_1,u_1\\in U,v_1\\in V\\\\y=u_2+v_2,u_2\\in U,v_2\\in V\\\\\\alpha x+\\beta y=\\alpha \\left( u_1+v_1 \\right) +\\beta \\left( u_2+v_2 \\right) =\\left( \\alpha u_1+\\beta u_2 \\right) +\\left( \\alpha v_1+\\beta v_2 \\right) \\\\Since\\,\\,U,V\\,\\,are\\,\\,subspaces, \\alpha u_1+\\beta u_2\\in U,\\alpha v_1+\\beta v_2\\in V\\Rightarrow \\\\\\Rightarrow \\alpha x+\\beta y\\in U+V, which\\,\\,was\\,\\,to\\,\\,be\\,\\,proved"
Comments
Leave a comment