a : T h e m a t r i x i s o f c o e f f i c i e n t s w r i t t e n i n l i n e s : A = [ 1 4 3 0 − 5 − 4 5 10 7 ] b : A [ x y z ] = 0 ⇒ { x + 4 y + 3 z = 0 − 5 y − 4 z = 0 5 x + 10 y + 7 z = 0 ⇒ { x + 4 y − 15 4 y = 0 5 x + 10 y − 35 4 y = 0 z = − 5 4 y ⇒ ⇒ { y = − 4 x y = − 4 x z = − 5 4 y ⇒ [ x y z ] = t [ 1 − 4 5 ] − o n e v e c t o r d i m ( k e r ( T ) ) = 1 d i m ( I m ( T ) ) = 3 − d i m ( k e r ( T ) ) = 3 − 1 = 2 c : A [ 1 0 0 ] = [ 1 0 5 ] , A [ 0 1 0 ] = [ 4 − 5 10 ] T w o v e c t o r s [ 1 0 5 ] , [ 4 − 5 10 ] b e l o n g t o I m ( T ) . T h e s e v e c t o r s a r e l i n e a r l y i n d e p e n d e n t sin c e t h e i r c o o r d i n a t e s a r e n o t p r o p o r t i o n a l . S i n c e d i m ( I m ( T ) ) = 2 , [ 1 0 5 ] , [ 4 − 5 10 ] a r e t h e b a s i s o f I m ( T ) a:The\,\,matrix\,\,is\,\,of\,\,coefficients\,\,written\,\,in\,\,lines:\\A=\left[ \begin{matrix} 1& 4& 3\\ 0& -5& -4\\ 5& 10& 7\\\end{matrix} \right] \\b:\\A\left[ \begin{array}{c} x\\ y\\ z\\\end{array} \right] =0\Rightarrow \left\{ \begin{array}{c} x+4y+3z=0\\ -5y-4z=0\\ 5x+10y+7z=0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} x+4y-\frac{15}{4}y=0\\ 5x+10y-\frac{35}{4}y=0\\ z=-\frac{5}{4}y\\\end{array} \right. \Rightarrow \\\Rightarrow \left\{ \begin{array}{c} y=-4x\\ y=-4x\\ z=-\frac{5}{4}y\\\end{array} \right. \Rightarrow \left[ \begin{array}{c} x\\ y\\ z\\\end{array} \right] =t\left[ \begin{array}{c} 1\\ -4\\ 5\\\end{array} \right] \,\,-\,\,one\,\,vector\\dim\left( ker\left( T \right) \right) =1\\dim\left( \mathrm{Im}\left( T \right) \right) =3-dim\left( ker\left( T \right) \right) =3-1=2\\c:\\A\left[ \begin{array}{c} 1\\ 0\\ 0\\\end{array} \right] =\left[ \begin{array}{c} 1\\ 0\\ 5\\\end{array} \right] ,A\left[ \begin{array}{c} 0\\ 1\\ 0\\\end{array} \right] =\left[ \begin{array}{c} 4\\ -5\\ 10\\\end{array} \right] \\Two\,\,vectors\,\,\left[ \begin{array}{c} 1\\ 0\\ 5\\\end{array} \right] ,\left[ \begin{array}{c} 4\\ -5\\ 10\\\end{array} \right] \,\,belong\,\,to\,\,\mathrm{Im}\left( T \right) . \\These\,\,vectors\,\,are\,\,linearly\,\,independent\,\,\sin ce\,\,their\,\,coordinates\,\,are\,\,not\,\,proportional.\\Since\,\,dim\left( \mathrm{Im}\left( T \right) \right) =2, \left[ \begin{array}{c} 1\\ 0\\ 5\\\end{array} \right] ,\left[ \begin{array}{c} 4\\ -5\\ 10\\\end{array} \right] \,\,are\,\,the\,\,basis\,\,of\,\,\mathrm{Im}\left( T \right) a : T h e ma t r i x i s o f coe ff i c i e n t s w r i tt e n in l in es : A = ⎣ ⎡ 1 0 5 4 − 5 10 3 − 4 7 ⎦ ⎤ b : A ⎣ ⎡ x y z ⎦ ⎤ = 0 ⇒ ⎩ ⎨ ⎧ x + 4 y + 3 z = 0 − 5 y − 4 z = 0 5 x + 10 y + 7 z = 0 ⇒ ⎩ ⎨ ⎧ x + 4 y − 4 15 y = 0 5 x + 10 y − 4 35 y = 0 z = − 4 5 y ⇒ ⇒ ⎩ ⎨ ⎧ y = − 4 x y = − 4 x z = − 4 5 y ⇒ ⎣ ⎡ x y z ⎦ ⎤ = t ⎣ ⎡ 1 − 4 5 ⎦ ⎤ − o n e v ec t or d im ( k er ( T ) ) = 1 d im ( Im ( T ) ) = 3 − d im ( k er ( T ) ) = 3 − 1 = 2 c : A ⎣ ⎡ 1 0 0 ⎦ ⎤ = ⎣ ⎡ 1 0 5 ⎦ ⎤ , A ⎣ ⎡ 0 1 0 ⎦ ⎤ = ⎣ ⎡ 4 − 5 10 ⎦ ⎤ Tw o v ec t ors ⎣ ⎡ 1 0 5 ⎦ ⎤ , ⎣ ⎡ 4 − 5 10 ⎦ ⎤ b e l o n g t o Im ( T ) . T h ese v ec t ors a re l in e a r l y in d e p e n d e n t sin ce t h e i r coor d ina t es a re n o t p ro p or t i o na l . S in ce d im ( Im ( T ) ) = 2 , ⎣ ⎡ 1 0 5 ⎦ ⎤ , ⎣ ⎡ 4 − 5 10 ⎦ ⎤ a re t h e ba s i s o f Im ( T )
Comments