Question #319282
  1. Answer the following questions

                                                              →            →            →  [ 1

a) Consider the linear transformation T(x) = proju(x), where u =  0

                                                                                                      3 ] 

Find the matrix for T.



b) Find the matrix for the linear transformation which reflects every vector in R2 across the x-axis and then rotates every vector through an angle of 𝝅/6. (Show all working)



1
Expert's answer
2022-03-29T01:15:51-0400

a:T(x)=proju(x)=(u,x)u2u=1x1+0x2+3x312+02+32[103]==[0.1x1+0.3x300.3x1+0.9x3]Matrix:A=[0.100.30000.300.9]b:Thereflection:R(x,y)=(x,y)Therotation:T(x,y)=(xcosπ6ysinπ6,xsinπ6+ycosπ6)==(32x12y,12x+32y)Thecomposition:T(R(x,y))=(32x12(y),12x+32(y))==(32x+12y,12x32y)Matrix:A=[32121232]a:\\T\left( x \right) =proj_u\left( x \right) =\frac{\left( u,x \right)}{\left\| u \right\| ^2}u=\frac{1x_1+0x_2+3x_3}{1^2+0^2+3^2}\left[ \begin{array}{c} 1\\ 0\\ 3\\\end{array} \right] =\\=\left[ \begin{array}{c} 0.1x_1+0.3x_3\\ 0\\ 0.3x_1+0.9x_3\\\end{array} \right] \\Matrix: A=\left[ \begin{matrix} 0.1& 0& 0.3\\ 0& 0& 0\\ 0.3& 0& 0.9\\\end{matrix} \right] \\b:\\The\,\,reflection: R\left( x,y \right) =\left( x,-y \right) \\The\,\,rotation: T\left( x,y \right) =\left( x\cos \frac{\pi}{6}-y\sin \frac{\pi}{6},x\sin \frac{\pi}{6}+y\cos \frac{\pi}{6} \right) =\\=\left( \frac{\sqrt{3}}{2}x-\frac{1}{2}y,\frac{1}{2}x+\frac{\sqrt{3}}{2}y \right) \\The\,\,composition:\\T\left( R\left( x,y \right) \right) =\left( \frac{\sqrt{3}}{2}x-\frac{1}{2}\left( -y \right) ,\frac{1}{2}x+\frac{\sqrt{3}}{2}\left( -y \right) \right) =\\=\left( \frac{\sqrt{3}}{2}x+\frac{1}{2}y,\frac{1}{2}x-\frac{\sqrt{3}}{2}y \right) \\Matrix: A=\left[ \begin{matrix} \frac{\sqrt{3}}{2}& \frac{1}{2}\\ \frac{1}{2}& -\frac{\sqrt{3}}{2}\\\end{matrix} \right]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS