Question #319286

        [ 1 0 -1

3. Consider the matrix A =  0 3 0

                      -1 0 1 ]


  1. Find the eigenvalues of A.
  2. Find the eigenspaces corresponding to each eigenvalue from A.
1
Expert's answer
2022-03-28T17:46:31-0400

A=(101030101)A=\begin{pmatrix} 1& 0&-1 \\ 0 & 3&0\\-1&0&1 \end{pmatrix}


λIA=λ1010λ3010λ1=0|λI-A|=\begin{vmatrix} λ-1& 0&1 \\ 0 & λ-3&0\\1&0&λ-1 \end{vmatrix} = 0


=>λIA=(λ3)[(λ1)21)]=0=>|λI-A|=(λ-3)[(λ-1)²-1)]=0


=>λIA=(λ3)(λ22λ)=λ(λ3)(λ2)=0=>|λI-A|=(λ-3)(λ²-2λ)=λ(λ-3)(λ-2)=0


λ=0,3,2∴ λ=0,3,2



when λ=0λ=0


MX=(101030101)(x1x2x3)=(000)MX=\begin{pmatrix} -1& 0&1 \\ 0 & -3&0\\1&0&-1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix} =\begin{pmatrix} 0 \\ 0\\0 \end{pmatrix}


=>(101030101)(101030101)(101030000)(101010000)=>\begin{pmatrix} -1& 0&1 \\ 0 & -3&0\\1&0&-1 \end{pmatrix}\backsim\begin{pmatrix} 1&0&-1 \\0&-3&0 \\-1&0&1 \end{pmatrix}\backsim\begin{pmatrix} 1&0&-1 \\ 0&-3&0\\0&0&0 \end{pmatrix}\backsim\begin{pmatrix} 1&0&-1 \\ 0&1&0\\0&0&0 \end{pmatrix}


=>x1x3=0=>x_{1}-x_{3}=0 x2=0x_{2}=0

Let x3=tx_{3}=t


x1=x3=t,x_{1}=x_{3}=t, x2=0x_{2}=0


The eigenspace corresponding to the eigenvalue λ=0 is

{(x1x2x3)R3:x1=x3,x2=0}\{\begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix}∈ℝ³ : x_{1}=x₃, x₂=0\}


when λ=2λ=2


MX=(101010101)(x1x2x3)=(000)MX=\begin{pmatrix} 1& 0&1 \\ 0 & -1&0\\1&0&1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix} =\begin{pmatrix} 0 \\ 0\\0 \end{pmatrix}


=>(101010101)(101010000)(101010000)=>\begin{pmatrix} 1& 0&1 \\ 0 & -1&0\\1&0&1 \end{pmatrix}\backsim\begin{pmatrix} 1&0&1 \\0&-1&0 \\0&0&0 \end{pmatrix}\backsim\begin{pmatrix} 1&0&1 \\ 0&1&0\\0&0&0 \end{pmatrix}


=>x1+x3=0=>x_{1}+x_{3}=0 , x2=0x_{2}=0


The eigenspace corresponding to the eigenvalue λ=2 is


{(x1x2x3)R3:x1+x3=x2=0}\{\begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix}∈ℝ³ : x_{1}+x₃=x₂=0\}



when λ=3λ=3

MX=(201000102)(x1x2x3)=(000)MX=\begin{pmatrix} 2& 0&1 \\ 0 & 0&0\\1&0&2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix} =\begin{pmatrix} 0 \\ 0\\0 \end{pmatrix}


=>(201000102)(102201000)(101003000)(101001000)=>\begin{pmatrix} 2& 0&1 \\ 0 & 0&0\\1&0&2 \end{pmatrix}\backsim\begin{pmatrix} 1&0&2 \\2&0&1 \\0&0&0 \end{pmatrix}\backsim\begin{pmatrix} 1&0&1 \\ 0&0&-3\\0&0&0 \end{pmatrix}\backsim\begin{pmatrix} 1&0&1 \\ 0&0&1\\0&0&0 \end{pmatrix}


=>x1+x3=0=>x_{1}+x_{3}=0 , x3=0x_{3}=0


x1=0∴x_{1}=0


The eigenspace corresponding to the eigenvalue λ=3 is


{(x1x2x3)R3:x1=0=x3}\{\begin{pmatrix} x_{1} \\ x_{2}\\x_{3} \end{pmatrix}∈ℝ³ : x_{1}=0=x₃\}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS