A=⎝⎛10−1030−101⎠⎞
∣λI−A∣=∣∣λ−1010λ−3010λ−1∣∣=0
=>∣λI−A∣=(λ−3)[(λ−1)2−1)]=0
=>∣λI−A∣=(λ−3)(λ2−2λ)=λ(λ−3)(λ−2)=0
∴λ=0,3,2
when λ=0
MX=⎝⎛−1010−3010−1⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
=>⎝⎛−1010−3010−1⎠⎞∽⎝⎛10−10−30−101⎠⎞∽⎝⎛1000−30−100⎠⎞∽⎝⎛100010−100⎠⎞
=>x1−x3=0 x2=0
Let x3=t
x1=x3=t, x2=0
The eigenspace corresponding to the eigenvalue λ=0 is
{⎝⎛x1x2x3⎠⎞∈R3:x1=x3,x2=0}
when λ=2
MX=⎝⎛1010−10101⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
=>⎝⎛1010−10101⎠⎞∽⎝⎛1000−10100⎠⎞∽⎝⎛100010100⎠⎞
=>x1+x3=0 , x2=0
The eigenspace corresponding to the eigenvalue λ=2 is
{⎝⎛x1x2x3⎠⎞∈R3:x1+x3=x2=0}
when λ=3
MX=⎝⎛201000102⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
=>⎝⎛201000102⎠⎞∽⎝⎛120000210⎠⎞∽⎝⎛1000001−30⎠⎞∽⎝⎛100000110⎠⎞
=>x1+x3=0 , x3=0
∴x1=0
The eigenspace corresponding to the eigenvalue λ=3 is
{⎝⎛x1x2x3⎠⎞∈R3:x1=0=x3}
Comments