A = ( 1 0 − 1 0 3 0 − 1 0 1 ) A=\begin{pmatrix}
1& 0&-1 \\
0 & 3&0\\-1&0&1
\end{pmatrix} A = ⎝ ⎛ 1 0 − 1 0 3 0 − 1 0 1 ⎠ ⎞
∣ λ I − A ∣ = ∣ λ − 1 0 1 0 λ − 3 0 1 0 λ − 1 ∣ = 0 |λI-A|=\begin{vmatrix}
λ-1& 0&1 \\
0 & λ-3&0\\1&0&λ-1
\end{vmatrix} = 0 ∣ λ I − A ∣ = ∣ ∣ λ − 1 0 1 0 λ − 3 0 1 0 λ − 1 ∣ ∣ = 0
= > ∣ λ I − A ∣ = ( λ − 3 ) [ ( λ − 1 ) 2 − 1 ) ] = 0 =>|λI-A|=(λ-3)[(λ-1)²-1)]=0 => ∣ λ I − A ∣ = ( λ − 3 ) [( λ − 1 ) 2 − 1 )] = 0
= > ∣ λ I − A ∣ = ( λ − 3 ) ( λ 2 − 2 λ ) = λ ( λ − 3 ) ( λ − 2 ) = 0 =>|λI-A|=(λ-3)(λ²-2λ)=λ(λ-3)(λ-2)=0 => ∣ λ I − A ∣ = ( λ − 3 ) ( λ 2 − 2 λ ) = λ ( λ − 3 ) ( λ − 2 ) = 0
∴ λ = 0 , 3 , 2 ∴ λ=0,3,2 ∴ λ = 0 , 3 , 2
when λ = 0 λ=0 λ = 0
M X = ( − 1 0 1 0 − 3 0 1 0 − 1 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) MX=\begin{pmatrix}
-1& 0&1 \\
0 & -3&0\\1&0&-1
\end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix} =\begin{pmatrix}
0 \\
0\\0
\end{pmatrix} MX = ⎝ ⎛ − 1 0 1 0 − 3 0 1 0 − 1 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
= > ( − 1 0 1 0 − 3 0 1 0 − 1 ) ∽ ( 1 0 − 1 0 − 3 0 − 1 0 1 ) ∽ ( 1 0 − 1 0 − 3 0 0 0 0 ) ∽ ( 1 0 − 1 0 1 0 0 0 0 ) =>\begin{pmatrix}
-1& 0&1 \\
0 & -3&0\\1&0&-1
\end{pmatrix}\backsim\begin{pmatrix}
1&0&-1 \\0&-3&0
\\-1&0&1
\end{pmatrix}\backsim\begin{pmatrix}
1&0&-1 \\
0&-3&0\\0&0&0
\end{pmatrix}\backsim\begin{pmatrix}
1&0&-1 \\
0&1&0\\0&0&0
\end{pmatrix} => ⎝ ⎛ − 1 0 1 0 − 3 0 1 0 − 1 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 − 1 0 − 3 0 − 1 0 1 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 − 3 0 − 1 0 0 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 1 0 − 1 0 0 ⎠ ⎞
= > x 1 − x 3 = 0 =>x_{1}-x_{3}=0 => x 1 − x 3 = 0 x 2 = 0 x_{2}=0 x 2 = 0
Let x 3 = t x_{3}=t x 3 = t
x 1 = x 3 = t , x_{1}=x_{3}=t, x 1 = x 3 = t , x 2 = 0 x_{2}=0 x 2 = 0
The eigenspace corresponding to the eigenvalue λ=0 is
{ ( x 1 x 2 x 3 ) ∈ R 3 : x 1 = x 3 , x 2 = 0 } \{\begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix}∈ℝ³ : x_{1}=x₃, x₂=0\} { ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ∈ R 3 : x 1 = x 3 , x 2 = 0 }
when λ = 2 λ=2 λ = 2
M X = ( 1 0 1 0 − 1 0 1 0 1 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) MX=\begin{pmatrix}
1& 0&1 \\
0 & -1&0\\1&0&1
\end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix} =\begin{pmatrix}
0 \\
0\\0
\end{pmatrix} MX = ⎝ ⎛ 1 0 1 0 − 1 0 1 0 1 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
= > ( 1 0 1 0 − 1 0 1 0 1 ) ∽ ( 1 0 1 0 − 1 0 0 0 0 ) ∽ ( 1 0 1 0 1 0 0 0 0 ) =>\begin{pmatrix}
1& 0&1 \\
0 & -1&0\\1&0&1
\end{pmatrix}\backsim\begin{pmatrix}
1&0&1 \\0&-1&0
\\0&0&0
\end{pmatrix}\backsim\begin{pmatrix}
1&0&1 \\
0&1&0\\0&0&0
\end{pmatrix} => ⎝ ⎛ 1 0 1 0 − 1 0 1 0 1 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 − 1 0 1 0 0 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 1 0 1 0 0 ⎠ ⎞
= > x 1 + x 3 = 0 =>x_{1}+x_{3}=0 => x 1 + x 3 = 0 , x 2 = 0 x_{2}=0 x 2 = 0
The eigenspace corresponding to the eigenvalue λ=2 is
{ ( x 1 x 2 x 3 ) ∈ R 3 : x 1 + x 3 = x 2 = 0 } \{\begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix}∈ℝ³ : x_{1}+x₃=x₂=0\} { ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ∈ R 3 : x 1 + x 3 = x 2 = 0 }
when λ = 3 λ=3 λ = 3
M X = ( 2 0 1 0 0 0 1 0 2 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) MX=\begin{pmatrix}
2& 0&1 \\
0 & 0&0\\1&0&2
\end{pmatrix} \begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix} =\begin{pmatrix}
0 \\
0\\0
\end{pmatrix} MX = ⎝ ⎛ 2 0 1 0 0 0 1 0 2 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
= > ( 2 0 1 0 0 0 1 0 2 ) ∽ ( 1 0 2 2 0 1 0 0 0 ) ∽ ( 1 0 1 0 0 − 3 0 0 0 ) ∽ ( 1 0 1 0 0 1 0 0 0 ) =>\begin{pmatrix}
2& 0&1 \\
0 & 0&0\\1&0&2
\end{pmatrix}\backsim\begin{pmatrix}
1&0&2 \\2&0&1
\\0&0&0
\end{pmatrix}\backsim\begin{pmatrix}
1&0&1 \\
0&0&-3\\0&0&0
\end{pmatrix}\backsim\begin{pmatrix}
1&0&1 \\
0&0&1\\0&0&0
\end{pmatrix} => ⎝ ⎛ 2 0 1 0 0 0 1 0 2 ⎠ ⎞ ∽ ⎝ ⎛ 1 2 0 0 0 0 2 1 0 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 0 0 1 − 3 0 ⎠ ⎞ ∽ ⎝ ⎛ 1 0 0 0 0 0 1 1 0 ⎠ ⎞
= > x 1 + x 3 = 0 =>x_{1}+x_{3}=0 => x 1 + x 3 = 0 , x 3 = 0 x_{3}=0 x 3 = 0
∴ x 1 = 0 ∴x_{1}=0 ∴ x 1 = 0
The eigenspace corresponding to the eigenvalue λ=3 is
{ ( x 1 x 2 x 3 ) ∈ R 3 : x 1 = 0 = x 3 } \{\begin{pmatrix}
x_{1} \\
x_{2}\\x_{3}
\end{pmatrix}∈ℝ³ : x_{1}=0=x₃\} { ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ∈ R 3 : x 1 = 0 = x 3 }
Comments