⟶ [1 ⟶ [-1 ⟶ [5
u1 = -3 u2 = 9 u3 = -7
-2] -6] h]
are linearly independent? (Show all working)
Given the three vectors are
"\\vec{u_{1}}=[1, -3, -2]"
"\\vec{u_{2}}=[5, 9, -6]"
"\\vec{u_{3}}=[5, -7, h]"
Now the three vectors will be linearly independent when for three scalars, "a, b" and "c" , we can write,
"a\\vec{u_{1}}+b\\vec{u_{2}}+c\\vec{u_{3}}=0" if and only iff when "a=b=c=0"
Therefore,
"a\\vec{u_{1}}+b\\vec{u_{2}}+c\\vec{u_{3}}=a[1, -3, -2]+b[5, 9, -6]+c[5, -7, h]=0"
"a[1, -3, -2]+b[5, 9, -6]+c[5, -7, h]=[0, 0, 0]"
"[a, -3a, -2a]+[5b, 9b, -6b]+[5c, -7c, hc]=[0, 0, 0]"
"a+5b+5c=0\\\\\n-3a+9b-7c=0\\\\\n-2a-6b+hc=0\\\\"
Solving these equations,
since for the linearly independent, "a=b=c=0" , which requires,
"h+\\frac{26}{3}\\neq0"
"h\\neq\\frac{26}{3}"
Hence other than this value, the three vectors will be linearly independent.
Comments
Leave a comment