Solve for the determinant in the equation below.
4 −3 2
1 2 −2
2 -1 −4
Solution
Given that
det(A)=∣4−3212−22−1−4∣det(A)=\begin{vmatrix} 4 & -3 & 2\\ 1 & 2 & -2\\ 2 & -1 & -4 \end{vmatrix}det(A)=∣∣412−32−12−2−4∣∣
det(A)=4∣2−2−1−4∣−(−3)∣1−22−4∣+2∣122−1∣det(A)=4\begin{vmatrix} 2 & -2 \\ -1 & -4 \end{vmatrix}-(-3)\begin{vmatrix} 1 & -2 \\ 2 & -4 \end{vmatrix}+2\begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix}det(A)=4∣∣2−1−2−4∣∣−(−3)∣∣12−2−4∣∣+2∣∣122−1∣∣
det(A)=4(−8−2)+3(−4+4)+2(−1−4)det(A)=4(-8-2)+3(-4+4)+2(-1-4)det(A)=4(−8−2)+3(−4+4)+2(−1−4)
det(A)=det(A)=det(A)= 4(−10)+3(0)+2(−5)4(-10)+3(0)+2(-5)4(−10)+3(0)+2(−5)
det(A)=−40+0−10det(A)=-40+0-10det(A)=−40+0−10
det(A)=−50det(A)=-50det(A)=−50
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment