Answer to Question #311845 in Linear Algebra for Showi

Question #311845

Solve for the determinant in the equation below.

4 −3 2

1 2 −2

2 -1 −4


1
Expert's answer
2022-03-15T19:25:45-0400

Solution


Given that


det(A)=432122214det(A)=\begin{vmatrix} 4 & -3 & 2\\ 1 & 2 & -2\\ 2 & -1 & -4 \end{vmatrix}


det(A)=42214(3)1224+21221det(A)=4\begin{vmatrix} 2 & -2 \\ -1 & -4 \end{vmatrix}-(-3)\begin{vmatrix} 1 & -2 \\ 2 & -4 \end{vmatrix}+2\begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix}


det(A)=4(82)+3(4+4)+2(14)det(A)=4(-8-2)+3(-4+4)+2(-1-4)



det(A)=det(A)= 4(10)+3(0)+2(5)4(-10)+3(0)+2(-5)


det(A)=40+010det(A)=-40+0-10


det(A)=50det(A)=-50


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment