1.
{ 6 x + 3 y = 6 5 x − 3 y = 3 \begin{cases}
6x+3y= 6 \\
5x-3y=3
\end{cases} { 6 x + 3 y = 6 5 x − 3 y = 3
Δ = d e t ∣ 6 3 5 − 3 ∣ = 6 ⋅ ( − 3 ) − 3 ⋅ 5 = − 33 \Delta = det\begin{vmatrix}
6 & 3 \\
5 & -3
\end{vmatrix} = 6\cdot(-3) - 3 \cdot 5 = -33 Δ = d e t ∣ ∣ 6 5 3 − 3 ∣ ∣ = 6 ⋅ ( − 3 ) − 3 ⋅ 5 = − 33
Δ 1 = d e t ∣ 6 3 3 − 3 ∣ = 6 ⋅ ( − 3 ) − 3 ⋅ 3 = − 27 \Delta_1 = det\begin{vmatrix}
6 & 3 \\
3 & -3
\end{vmatrix} = 6 \cdot (-3) - 3 \cdot 3 = -27 Δ 1 = d e t ∣ ∣ 6 3 3 − 3 ∣ ∣ = 6 ⋅ ( − 3 ) − 3 ⋅ 3 = − 27
Δ 2 = d e t ∣ 6 6 5 3 ∣ = 6 ⋅ 3 − 6 ⋅ 5 = − 12 \Delta_2 = det\begin{vmatrix}
6 & 6 \\
5 & 3
\end{vmatrix} = 6 \cdot 3 - 6 \cdot 5 = -12 Δ 2 = d e t ∣ ∣ 6 5 6 3 ∣ ∣ = 6 ⋅ 3 − 6 ⋅ 5 = − 12
x = Δ 1 Δ = − 27 − 33 = 9 11 x = \frac{\Delta_1}{\Delta} = \frac{-27}{-33} =\frac{9}{11} x = Δ Δ 1 = − 33 − 27 = 11 9
y = Δ 2 Δ = − 12 − 33 = 4 11 y = \frac{\Delta_2}{\Delta} = \frac{-12}{-33} =\frac{4}{11} y = Δ Δ 2 = − 33 − 12 = 11 4
2.
{ 2 x − 3 y = 5 4 x + 10 y = 4 \begin{cases}
2x-3y=5 \\
4x+10y=4
\end{cases} { 2 x − 3 y = 5 4 x + 10 y = 4
Δ = d e t ∣ 2 − 3 4 10 ∣ = 2 ⋅ 10 − ( − 3 ) ⋅ 4 = 32 \Delta = det\begin{vmatrix}
2 & -3 \\
4 & 10
\end{vmatrix} = 2\cdot 10 - (-3) \cdot 4 = 32 Δ = d e t ∣ ∣ 2 4 − 3 10 ∣ ∣ = 2 ⋅ 10 − ( − 3 ) ⋅ 4 = 32
Δ 1 = d e t ∣ 5 − 3 4 10 ∣ = 5 ⋅ 10 − ( − 3 ) ⋅ 4 = 62 \Delta_1 = det\begin{vmatrix}
5 & -3 \\
4 & 10
\end{vmatrix} = 5\cdot 10 - (-3) \cdot 4 = 62 Δ 1 = d e t ∣ ∣ 5 4 − 3 10 ∣ ∣ = 5 ⋅ 10 − ( − 3 ) ⋅ 4 = 62
Δ 2 = d e t ∣ 2 5 4 4 ∣ = 2 ⋅ 4 − 5 ⋅ 4 = − 12 \Delta_2 = det\begin{vmatrix}
2 & 5 \\
4 & 4
\end{vmatrix} = 2\cdot 4 - 5 \cdot 4 = -12 Δ 2 = d e t ∣ ∣ 2 4 5 4 ∣ ∣ = 2 ⋅ 4 − 5 ⋅ 4 = − 12
x = Δ 1 Δ = 62 32 = 31 16 x = \frac{\Delta_1}{\Delta} = \frac{62}{32} = \frac{31}{16} x = Δ Δ 1 = 32 62 = 16 31
y = Δ 2 Δ = − 12 32 = − 3 8 y = \frac{\Delta_2}{\Delta} = \frac{-12}{32} = \frac{-3}{8} y = Δ Δ 2 = 32 − 12 = 8 − 3
Comments