Question #311229

D. Cramer’s Rule; 1. 6x+3y= 6; 5x-3y=3 2. 2x-3y=5; 4x+10y=4


1
Expert's answer
2022-03-16T14:18:20-0400

1.

{6x+3y=65x3y=3\begin{cases} 6x+3y= 6 \\ 5x-3y=3 \end{cases}


Δ=det6353=6(3)35=33\Delta = det\begin{vmatrix} 6 & 3 \\ 5 & -3 \end{vmatrix} = 6\cdot(-3) - 3 \cdot 5 = -33


Δ1=det6333=6(3)33=27\Delta_1 = det\begin{vmatrix} 6 & 3 \\ 3 & -3 \end{vmatrix} = 6 \cdot (-3) - 3 \cdot 3 = -27


Δ2=det6653=6365=12\Delta_2 = det\begin{vmatrix} 6 & 6 \\ 5 & 3 \end{vmatrix} = 6 \cdot 3 - 6 \cdot 5 = -12


x=Δ1Δ=2733=911x = \frac{\Delta_1}{\Delta} = \frac{-27}{-33} =\frac{9}{11}


y=Δ2Δ=1233=411y = \frac{\Delta_2}{\Delta} = \frac{-12}{-33} =\frac{4}{11}


2.

{2x3y=54x+10y=4\begin{cases} 2x-3y=5 \\ 4x+10y=4 \end{cases}


Δ=det23410=210(3)4=32\Delta = det\begin{vmatrix} 2 & -3 \\ 4 & 10 \end{vmatrix} = 2\cdot 10 - (-3) \cdot 4 = 32


Δ1=det53410=510(3)4=62\Delta_1 = det\begin{vmatrix} 5 & -3 \\ 4 & 10 \end{vmatrix} = 5\cdot 10 - (-3) \cdot 4 = 62


Δ2=det2544=2454=12\Delta_2 = det\begin{vmatrix} 2 & 5 \\ 4 & 4 \end{vmatrix} = 2\cdot 4 - 5 \cdot 4 = -12


x=Δ1Δ=6232=3116x = \frac{\Delta_1}{\Delta} = \frac{62}{32} = \frac{31}{16}


y=Δ2Δ=1232=38y = \frac{\Delta_2}{\Delta} = \frac{-12}{32} = \frac{-3}{8}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS