D. Cramer’s Rule; 1. 6x+3y= 6; 5x-3y=3 2. 2x-3y=5; 4x+10y=4
1.
"\\begin{cases}\n 6x+3y= 6 \\\\\n 5x-3y=3\n\\end{cases}"
"\\Delta = det\\begin{vmatrix}\n 6 & 3 \\\\\n 5 & -3\n\\end{vmatrix} = 6\\cdot(-3) - 3 \\cdot 5 = -33"
"\\Delta_1 = det\\begin{vmatrix}\n 6 & 3 \\\\\n 3 & -3\n\\end{vmatrix} = 6 \\cdot (-3) - 3 \\cdot 3 = -27"
"\\Delta_2 = det\\begin{vmatrix}\n 6 & 6 \\\\\n 5 & 3\n\\end{vmatrix} = 6 \\cdot 3 - 6 \\cdot 5 = -12"
"x = \\frac{\\Delta_1}{\\Delta} = \\frac{-27}{-33} =\\frac{9}{11}"
"y = \\frac{\\Delta_2}{\\Delta} = \\frac{-12}{-33} =\\frac{4}{11}"
2.
"\\begin{cases}\n 2x-3y=5 \\\\\n 4x+10y=4\n\\end{cases}"
"\\Delta = det\\begin{vmatrix}\n 2 & -3 \\\\\n 4 & 10\n\\end{vmatrix} = 2\\cdot 10 - (-3) \\cdot 4 = 32"
"\\Delta_1 = det\\begin{vmatrix}\n 5 & -3 \\\\\n 4 & 10\n\\end{vmatrix} = 5\\cdot 10 - (-3) \\cdot 4 = 62"
"\\Delta_2 = det\\begin{vmatrix}\n 2 & 5 \\\\\n 4 & 4\n\\end{vmatrix} = 2\\cdot 4 - 5 \\cdot 4 = -12"
"x = \\frac{\\Delta_1}{\\Delta} = \\frac{62}{32} = \\frac{31}{16}"
"y = \\frac{\\Delta_2}{\\Delta} = \\frac{-12}{32} = \\frac{-3}{8}"
Comments
Leave a comment