Let V = set of all 3x1 matrices.
Define
+ to be the matrix addition
⦁ to be the matrix multiplication by a number
We know that V is a vector space. If W [a, b, 1] , a, b element of R then W is a subspace of V.
x1⃗=[a1,b1,1]∈W,a1,b1∈Rx2⃗=[a2,b2,1]∈W,a2,b2∈R\vec{x_1}=[a_1,b_1,1]\in W, a_1,b_1\in R\\ \vec{x_2}=[a_2,b_2,1]\in W, a_2,b_2\in R\\x1=[a1,b1,1]∈W,a1,b1∈Rx2=[a2,b2,1]∈W,a2,b2∈R
1.x1⃗+x2⃗=[a1,b1,1]+[a2,b2,1]==[a1+a2,b1+b2,2]∉W1. \vec{x_1}+\vec{x_2}=[a_1,b_1,1]+[a_2,b_2,1]=\\ =[a_1+a_2,b_1+b_2,2]\not\in W1.x1+x2=[a1,b1,1]+[a2,b2,1]==[a1+a2,b1+b2,2]∈W
W is not a subspace of V.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment