Solution
Given that
[ 1 3 0 0 0.5 1 0.5 0 1 ] × [ x y z ] = [ 4 1 3 ] \begin{bmatrix}
1 & 3 & 0\\
0 & 0.5 & 1\\
0.5 & 0&1\\
\end{bmatrix}\times\begin{bmatrix}
x \\
y \\
z\\
\end{bmatrix}=\begin{bmatrix}
4 \\
1 \\
3\\
\end{bmatrix} ⎣ ⎡ 1 0 0.5 3 0.5 0 0 1 1 ⎦ ⎤ × ⎣ ⎡ x y z ⎦ ⎤ = ⎣ ⎡ 4 1 3 ⎦ ⎤
This can be written as
A X = B AX=B A X = B
A − 1 A X = A − 1 B A^{-1}AX=A^{-1}B A − 1 A X = A − 1 B
I X = A − 1 B IX=A^{-1}B I X = A − 1 B
X = A − 1 B X=A^{-1}B X = A − 1 B
Now
A = [ 1 3 0 0 0.5 1 0.5 0 1 ] A=\begin{bmatrix}
1 & 3 & 0\\
0 & 0.5 & 1\\
0.5 & 0&1\\
\end{bmatrix} A = ⎣ ⎡ 1 0 0.5 3 0.5 0 0 1 1 ⎦ ⎤
\begin{gathered}
\Rightarrow & \det \left( A \right) = 1\left( {0.5 - 0} \right) - 3\left( {0 - 0.5} \right) + 0\left( {0 - 0.25} \right) \\
\Rightarrow & \det \left( A \right) = 0.5 + 1.5 = 2 \\
\end{gathered} \
Then
{A^{ - 1}} = \frac{{AdjA}}{{\det \left( A \right)}}\
{A^{ - 1}} = \frac{\begin{bmatrix}
0.5 & -3 & 3\\
0.5 & 1 & -1\\
-0.25 & 1.5&0.5\\
\end{bmatrix}}{{(2)}}\
A − 1 = [ 0.25 − 1.5 1.5 0.25 0.5 − 0.5 − 0.125 0.75 0.25 ] {A^{ - 1}} = \begin{bmatrix}
0.25 & -1.5 & 1.5\\
0.25 & 0.5 & -0.5\\
-0.125 & 0.75&0.25\\
\end{bmatrix} A − 1 = ⎣ ⎡ 0.25 0.25 − 0.125 − 1.5 0.5 0.75 1.5 − 0.5 0.25 ⎦ ⎤
Therefore,
X = A − 1 B X=A^{-1}B X = A − 1 B
X = X= X = [ 0.25 − 1.5 1.5 0.25 0.5 − 0.5 − 0.125 0.75 0.25 ] [ x y z ] \begin{bmatrix}
0.25 & -1.5 & 1.5\\
0.25 & 0.5 & -0.5\\
-0.125 & 0.75&0.25\\
\end{bmatrix}\begin{bmatrix}
x \\
y \\
z\\
\end{bmatrix} ⎣ ⎡ 0.25 0.25 − 0.125 − 1.5 0.5 0.75 1.5 − 0.5 0.25 ⎦ ⎤ ⎣ ⎡ x y z ⎦ ⎤
[ x y z ] = \begin{bmatrix}
x \\
y \\
z\\
\end{bmatrix}= ⎣ ⎡ x y z ⎦ ⎤ = [ 4 0 1 ] \begin{bmatrix}
4\\
0\\
1\\
\end{bmatrix} ⎣ ⎡ 4 0 1 ⎦ ⎤
Hence
x = 4 , y = 0 z = 1 x=4,\ y=0\ z=1 x = 4 , y = 0 z = 1
Comments