Answer to Question #311837 in Linear Algebra for Showi

Question #311837

Solve the following equation using inverse method

[1 3 0] [x] [4]

[0 0.5 1] [y]=[1]

[0.5 0 1] [z] [3]


1
Expert's answer
2022-03-15T19:23:55-0400

Solution


Given that


[13000.510.501]×[xyz]=[413]\begin{bmatrix} 1 & 3 & 0\\ 0 & 0.5 & 1\\ 0.5 & 0&1\\ \end{bmatrix}\times\begin{bmatrix} x \\ y \\ z\\ \end{bmatrix}=\begin{bmatrix} 4 \\ 1 \\ 3\\ \end{bmatrix}


This can be written as


AX=BAX=B


A1AX=A1BA^{-1}AX=A^{-1}B


IX=A1BIX=A^{-1}B


X=A1BX=A^{-1}B


Now


A=[13000.510.501]A=\begin{bmatrix} 1 & 3 & 0\\ 0 & 0.5 & 1\\ 0.5 & 0&1\\ \end{bmatrix}


\begin{gathered} \Rightarrow & \det \left( A \right) = 1\left( {0.5 - 0} \right) - 3\left( {0 - 0.5} \right) + 0\left( {0 - 0.25} \right) \\ \Rightarrow & \det \left( A \right) = 0.5 + 1.5 = 2 \\ \end{gathered} \


Then 


{A^{ - 1}} = \frac{{AdjA}}{{\det \left( A \right)}}\


{A^{ - 1}} = \frac{\begin{bmatrix} 0.5 & -3 & 3\\ 0.5 & 1 & -1\\ -0.25 & 1.5&0.5\\ \end{bmatrix}}{{(2)}}\



A1=[0.251.51.50.250.50.50.1250.750.25]{A^{ - 1}} = \begin{bmatrix} 0.25 & -1.5 & 1.5\\ 0.25 & 0.5 & -0.5\\ -0.125 & 0.75&0.25\\ \end{bmatrix}


Therefore,


X=A1BX=A^{-1}B


X=X= [0.251.51.50.250.50.50.1250.750.25][xyz]\begin{bmatrix} 0.25 & -1.5 & 1.5\\ 0.25 & 0.5 & -0.5\\ -0.125 & 0.75&0.25\\ \end{bmatrix}\begin{bmatrix} x \\ y \\ z\\ \end{bmatrix}




[xyz]=\begin{bmatrix} x \\ y \\ z\\ \end{bmatrix}= [401]\begin{bmatrix} 4\\ 0\\ 1\\ \end{bmatrix}


Hence


x=4, y=0 z=1x=4,\ y=0\ z=1







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment