Solution
Given that
⎣⎡100.530.50011⎦⎤×⎣⎡xyz⎦⎤=⎣⎡413⎦⎤
This can be written as
AX=B
A−1AX=A−1B
IX=A−1B
X=A−1B
Now
A=⎣⎡100.530.50011⎦⎤
\begin{gathered}
\Rightarrow & \det \left( A \right) = 1\left( {0.5 - 0} \right) - 3\left( {0 - 0.5} \right) + 0\left( {0 - 0.25} \right) \\
\Rightarrow & \det \left( A \right) = 0.5 + 1.5 = 2 \\
\end{gathered} \
Then
{A^{ - 1}} = \frac{{AdjA}}{{\det \left( A \right)}}\
{A^{ - 1}} = \frac{\begin{bmatrix}
0.5 & -3 & 3\\
0.5 & 1 & -1\\
-0.25 & 1.5&0.5\\
\end{bmatrix}}{{(2)}}\
A−1=⎣⎡0.250.25−0.125−1.50.50.751.5−0.50.25⎦⎤
Therefore,
X=A−1B
X= ⎣⎡0.250.25−0.125−1.50.50.751.5−0.50.25⎦⎤⎣⎡xyz⎦⎤
⎣⎡xyz⎦⎤= ⎣⎡401⎦⎤
Hence
x=4, y=0 z=1
Comments
Leave a comment