Find the inverse of matrix A given below using the formula A -1 =CT/│A│
A="\\begin{vmatrix}\n -6 & -4 & -4 \\\\\n -1 & -4 & 6 \\\\\\\n-6 & 5 & -1\n\\end{vmatrix}"
At first step we compute the determinant of "A": "|A|=(-6)(-4)(-1)+(-1)(-4)5+(-4)(-6)6-(-6)\\,6\\,5+(-1)(-4)+6(-4)(-4)=-24+20+144+180+4+96=420"
Matrix "C^{\\top}=\\left(\\begin{array}{lll}-26&-24&-40\\\\-37&-18&40\\\\-{29}&54&20\\end{array}\\right)"has the form: Matrix "A^{\\top}" has the form: "A=\\left(\\begin{array}{lll}-\\frac{13}{210}&-\\frac{2}{35}&-\\frac{2}{21}\\\\-\\frac{37}{420}&-\\frac{3}{70}&\\frac{2}{21}\\\\-\\frac{29}{420}&\\frac{9}{70}&\\frac{1}{21}\\end{array}\\right)".
Comments
Leave a comment