<e> Show that if P and Q are vector Subspaces of a vector space V then P ∩ Q is also a vector subspace of V.
Define "x,y\\in P\\cap Q" and also "\\alpha \\in \\mathbb{F}".
we have to prove that "P\\cap Q\\neq \\phi" "\\alpha(x+y) \\in P\\cap Q"
"\\text{since P and Q are subspaces of V THEN , P }\u2260\\phi \\text{ and } Q\u2260\\phi\\implies P\\cap Q\\neq \\phi"
"\\text{since P and Q are subspaces of V }\\implies \\alpha(x+y) \\in P \\text{ and } \\alpha(x+y) \\in Q"
Hence, "\\alpha(x+y) \\in P\\cap Q"
Thus, we may conclude that, "P\\cap Q" is a subspace of "V"
Comments
Leave a comment