x+2y+2z=1x+ay+3z=3x+11y+az=b Augmented matrix
⎣⎡1112a1123a13b⎦⎤ R2=R2−R1
⎣⎡1012a−21121a12b⎦⎤ R3=R3−R1
⎣⎡1002a−2921a−212b−1⎦⎤
If a−2=0
⎣⎡10020921012b−1⎦⎤
y=9b−1,z=2,x=1−92(b−1)−4 If a=2, we have the unique solution
(−92b+25,9b−1,2) If a=2
R2=a−2R2
⎣⎡1002192a−21a−21a−22b−1⎦⎤ R1=R1−2R2
⎣⎡1000192−a−22a−21a−21−a−24a−22b−1⎦⎤ R3=R3−9R2
⎣⎡100010a−22a−6a−21a−2(a−2)2−9a−2a−6a−22a−2(b−1)(a−2)−18⎦⎤
If a−2(a−2)2−9=0
a1=−1,a2=5 a=−1
⎣⎡1000108/3−1/307/3−2/3b+5⎦⎤ If b=−5, the system has no solution.
If b=−5, the system has more than one solution.
a=5
⎣⎡1000104/31/30−1/32/3b−7⎦⎤ If b=7, the system has no solution.
If b=7, the system has more than one solution.
If a=2,a=−1,a=5
R3=((a−2)2−9a−2)R3
⎣⎡100010a−22a−6a−211a−2a−6a−22(a−2)2−9(b−1)(a−2)−18⎦⎤ R1=R1−(a−22a−6)R3
⎣⎡1000100a−211(a+1)(a−5)a2−6a+33−2(a−3)ba−22(a−2)2−9(b−1)(a−2)−18⎦⎤
R2=R2−a−2R3
⎣⎡100010001(a+1)(a−5)a2−6a+33−2(a−3)b(a+1)(a−5)2a−3−b(a+1)(a−5)(b−1)(a−2)−18⎦⎤ In this case the system has the unique solution.
i) The system has the unique solution for a=−1,a=5.
ii) The system has more than one solution for (a,b)=(−1,−5) or (a,b)=(5,7).
Comments