Question #296000

Write the vector (1, −2, 5) as a linear combination of the vectors (1, 1, 1),(1, 2, 3)

and (2, −1, 1)


1
Expert's answer
2022-02-14T10:31:32-0500


Let us write the vector (1,2,5)(1, −2, 5) as a linear combination of the vectors (1,1,1),(1,2,3)(1, 1, 1),(1, 2, 3)

and (2,1,1).(2, −1, 1).


Let

 (1,2,5)=a(1,1,1)+b(1,2,3)+c(2,1,1)=(a+b+2c,a+2bc,a+3b+c).(1, −2, 5)=a(1, 1, 1)+b(1, 2, 3)+c(2, −1, 1)=(a+b+2c,a+2b-c,a+3b+c).


It follows that we get the system


{a+b+2c=1a+2bc=2a+3b+c=5\begin{cases} a+b+2c=1\\ a+2b-c=-2\\ a+3b+c=5 \end{cases}


which is equivalent after subtracting from the second row the first row, and from the third row the second row to the system


{a+b+2c=1b3c=3b+2c=7\begin{cases} a+b+2c=1\\ b-3c=-3\\ b+2c=7 \end{cases}


and hence the last system is equivalent after subtracting from the third row the second row to the system


{a+b+2c=1b3c=35c=10\begin{cases} a+b+2c=1\\ b-3c=-3\\ 5c=10 \end{cases}


It follows that

 c=2,b=3c3=63=3,a=1b2c=134=6.c=2,\\ b=3c-3=6-3=3,\\ a=1-b-2c=1-3-4=-6.


We conclude that (1,2,5)=6(1,1,1)+3(1,2,3)+2(2,1,1).(1, −2, 5)=-6(1, 1, 1)+3(1, 2, 3)+2(2, −1, 1).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS