Given that M is a singular matrix, evaluate x where;
6 7 -1
M = 3 x 5
9 11 x
M=(67−13x5911x)M=\begin{pmatrix} 6& 7 & -1\\ 3 & x & 5\\ 9& 11 & x \end{pmatrix}M=⎝⎛6397x11−15x⎠⎞
det M=0
∣67−13x5911x∣=06x2−33+315+9x−330−21x=06x2−12x−48=0x2−2x−8=0x1=−2,x2=4\begin{vmatrix} 6& 7 & -1\\ 3 & x & 5\\ 9& 11 & x \end{vmatrix}=0\\ 6x^2-33+315+9x-330-21x=0\\ 6x^2-12x-48=0\\ x^2-2x-8=0\\ x_1=-2, x_2=4∣∣6397x11−15x∣∣=06x2−33+315+9x−330−21x=06x2−12x−48=0x2−2x−8=0x1=−2,x2=4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments