Answer to Question #287796 in Linear Algebra for Zeki

Question #287796

find the inverse of this matrix by using Gausian method


A= 4X + 5Y = 6


X + 5Y = 3


1
Expert's answer
2022-01-18T06:31:03-0500
4X+5Y=64X + 5Y = 6

X+5Y=3X + 5Y = 3

A=[4515]A=\begin{bmatrix} 4 & 5 \\ 1 & 5 \end{bmatrix}

[45101501]\begin{bmatrix} 4 & 5 & & 1 & 0 \\ 1 & 5 & & 0 & 1 \end{bmatrix}

R1=R1/4R_1=R_1/4


[15/41/401501]\begin{bmatrix} 1 & 5/4 & & 1/4 & 0 \\ 1 & 5 & & 0 & 1 \end{bmatrix}

R2=R2R1R_2=R_2-R_1


[15/41/40015/41/41]\begin{bmatrix} 1 & 5/4 & & 1/4 & 0 \\ 0 & 15/4 & & -1/4 & 1 \end{bmatrix}

R2=4R2/15R_2=4R_2/15


[15/41/40011/154/15]\begin{bmatrix} 1 & 5/4 & & 1/4 & 0 \\ 0 & 1 & & -1/15 & 4/15 \end{bmatrix}

R1=R15R2/4R_1=R_1-5R_2/4


[101/31/3011/154/15]\begin{bmatrix} 1 & 0 & & 1/3 & -1/3 \\ 0 & 1 & & -1/15 & 4/15 \end{bmatrix}

A1=[1/31/31/154/15]A^{-1}=\begin{bmatrix} 1/3 & -1/3 \\ -1/15 & 4/15 \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment