Transforming matrix t t t is given by
t = ( 1 2 3 0 4 5 0 0 6 ) t=\begin{pmatrix}
1&2&3 \\
0&4&5 \\
0&0&6
\end{pmatrix} t = ⎝ ⎛ 1 0 0 2 4 0 3 5 6 ⎠ ⎞
Characteristic polynomial of t t t is of form
λ 3 − D 1 λ 2 + D 2 λ − D 3 = 0 \lambda^3-D_1\lambda^2+D_2\lambda-D_3=0 λ 3 − D 1 λ 2 + D 2 λ − D 3 = 0
Where D 1 = D_1= D 1 = Sum of main diagonal element
= 1 + 4 + 6 = 11 =1+4+6=11 = 1 + 4 + 6 = 11
D 2 = D_2= D 2 = Sum of minors of the main diagonal element
D 2 = ∣ 4 5 0 6 ∣ + ∣ 1 3 0 6 ∣ + ∣ 1 2 0 4 ∣ D_2= \begin{vmatrix}
4 & 5 \\
0& 6
\end{vmatrix}+\begin{vmatrix}
1& 3\\
0& 6
\end{vmatrix}+\begin{vmatrix}
1& 2\\
0& 4
\end{vmatrix} D 2 = ∣ ∣ 4 0 5 6 ∣ ∣ + ∣ ∣ 1 0 3 6 ∣ ∣ + ∣ ∣ 1 0 2 4 ∣ ∣
= 24 + 6 + 4 = 34 =24+6+4=34 = 24 + 6 + 4 = 34
D 3 = d e t ∣ t ∣ = 1 ( 24 − 0 ) + 2 ( 0 − 0 ) + 3 ( 0 − 0 ) D_3=det\>|t|=1(24-0)+2(0-0)+3(0-0) D 3 = d e t ∣ t ∣ = 1 ( 24 − 0 ) + 2 ( 0 − 0 ) + 3 ( 0 − 0 )
= 24 =24 = 24
Characteristic polynomial:
λ 3 − 11 λ 2 + 34 λ − 24 = ( λ − 1 ) ( λ − 4 ) ( λ − 6 ) \lambda^3-11\lambda^2+34\lambda-24=(\lambda-1)(\lambda-4)(\lambda-6) λ 3 − 11 λ 2 + 34 λ − 24 = ( λ − 1 ) ( λ − 4 ) ( λ − 6 )
The minimum polynomial will have roots
1 , 4 a n d 6 1,4\>and\>6 1 , 4 an d 6
Putting the matrix in the characteristic polynomial
T − 1 = ( 0 2 3 0 3 5 0 0 5 ) T-1=\begin{pmatrix}
0&2&3 \\
0&3&5\\
0&0&5
\end{pmatrix}\> T − 1 = ⎝ ⎛ 0 0 0 2 3 0 3 5 5 ⎠ ⎞
T − 4 = ( − 3 2 3 0 0 5 0 0 2 ) T-4=\begin{pmatrix}
-3& 2&3 \\
0&0 & 5\\
0&0&2
\end{pmatrix} T − 4 = ⎝ ⎛ − 3 0 0 2 0 0 3 5 2 ⎠ ⎞
T − 6 = ( − 5 2 3 0 − 2 5 0 0 0 ) T-6=\begin{pmatrix}
-5&2& 3\\
0&-2& 5\\
0&0&0
\end{pmatrix} T − 6 = ⎝ ⎛ − 5 0 0 2 − 2 0 3 5 0 ⎠ ⎞
( 0 2 3 0 3 5 0 0 5 ) ( − 3 2 3 0 0 5 0 0 2 ) ( − 5 2 3 0 − 2 5 0 0 0 ) = ( 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
0&2 & 3\\
0&3& 5\\
0&0&5
\end{pmatrix}\begin{pmatrix}
-3& 2&3\\
0&0&5\\
0&0&2
\end{pmatrix}\begin{pmatrix}
-5&2&3 \\
0&-2&5\\
0&0&0
\end{pmatrix}=\begin{pmatrix}
0&0&0\\
0&0& 0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 2 3 0 3 5 5 ⎠ ⎞ ⎝ ⎛ − 3 0 0 2 0 0 3 5 2 ⎠ ⎞ ⎝ ⎛ − 5 0 0 2 − 2 0 3 5 0 ⎠ ⎞ = ⎝ ⎛ 0 0 0 0 0 0 0 0 0 ⎠ ⎞
∴ \therefore ∴ The minimal polynomial of t t t is
M t x = ( x − 1 ) ( x − 4 ) ( x − 6 ) M_tx=(x-1)(x-4)(x-6) M t x = ( x − 1 ) ( x − 4 ) ( x − 6 )
Comments